精英家教网 > 高中数学 > 题目详情
10.函数y=1-2sin2(2x)的最小正周期是$\frac{π}{2}$.

分析 利用二倍角和辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期

解答 解:函数y=1-2sin2(2x)
化简可得:y=1-2($\frac{1}{2}$$-\frac{1}{2}cos4x$)=cos4x.
∴最小正周期T=$\frac{2π}{4}=\frac{π}{2}$,
故答案为$\frac{π}{2}$.

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.双曲线M:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,直线x=a与双曲线M渐近线交于点P,若sin∠PF1F2=$\frac{1}{3}$,则该双曲线的离心率为$\frac{9}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,曲线C由左半椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0,x≤0)和圆N:(x-2)2+y2=5在y轴右侧的部分连接而成,A,B是M与N的公共点,点P,Q(均异于点A,B)分别是M,N上的动点.
(1)若|PQ|的最大值为4+$\sqrt{5}$,求半椭圆M的方程;
(2)若直线PQ过点A,且$\overrightarrow{AQ}$=-2$\overrightarrow{AP}$,$\overrightarrow{BP}$⊥$\overrightarrow{BQ}$,求半椭圆M的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.大学生小王自主创业,在乡下承包了一块耕地种植某种水果,每季投入2万元,根据以往的经验,每季收获的此种水果能全部售完,且水果的市场价格和这块地上的产量具有随机性,互不影响,具体情况如表:
水果产量(kg)30004000
概率0.40.6
水果市场价格(元/kg)1620
概率0.50.5
(Ⅰ)设X表示在这块地种植此水果一季的利润,求X的分布列及期望;
(Ⅱ)在销售收入超过5万元的情况下,利润超过5万元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.将函数$y=sin(2x+\frac{π}{3})+2$的图象向右平移$\frac{π}{6}$个单位,再向下平移2个单位所得图象对应函数的解析式是y=sin2x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.甲与其四位朋友各有一辆私家车,甲的车牌尾数是0,其四位朋友的车牌尾数分别是0,2,1,5,为遵守当地4月1日至5日5天的限行规定(奇数日车牌尾数为奇数的车通行,偶数日车牌尾数为偶数的车通行),五人商议拼车出行,每天任选一辆符合规定的车,但甲的车最多只能用一天,则不同的用车方案总数为64.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知{an}为等差数列,若a1=6,a3+a5=0,则数列{an}的通项公式为an=8-2n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若${z_1},{z_2}∈C,{z_1}•\overline{z_2}+\overline{z_1}•{z_2}$是(  )
A.纯虚数B.实数C.虚数D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设复数z满足z2=3-4i,则z的模是(  )
A.$\sqrt{5}$B.5C.$\sqrt{3}$D.1

查看答案和解析>>

同步练习册答案