精英家教网 > 高中数学 > 题目详情
求下列函数的定义域.
(1)y=x+
1
x2-4
; 
(2)y=
1
|x|-2

(3)y=
x2+x+1
+(x-1)0
(1)要使函数y=x+
1
x2-4
有意义,应满足x2-4≠0,∴x≠±2,
∴定义域为{x∈R|x≠±2}.
(2)函数y=
1
|x|-2
有意义时,|x|-2>0,
∴x>2或x<-2.
∴定义域为{x∈R|x>2或x<-2}.
(3)∵x2+x+1=(x+
1
2
2+
3
4
>0,
∴要使此函数有意义,只须x-1≠0,∴x≠1,
∴定义域为{x∈R|x≠1}.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求下列函数的定义域(要求用区间表示):
(1)f(x)=
4-x
2x-3
+log3(x+1)
;         (2)y=
1-log2(4x-5)

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的定义域:
(1)f(x)=
1-(
1
2
)
x
;  
(2)g(x)=
1
log3(3x-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的定义域:
(1)y=
sinx-cosx
;       
(2)y=
2+log
1
2
x
+
tanx

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的定义域与值域
(1)y=
x
1
2
+x-
1
2
x
1
2
-x-
1
2

(2)y=
-(lo
g
x
1
4
)
2
+lo
g
x
1
4
+2

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的定义域:
(1)f(x)=
1
x-1

(2)f(x)=
1-(
1
2
)
x

查看答案和解析>>

同步练习册答案