精英家教网 > 高中数学 > 题目详情
18.“α=$\frac{π}{6}$”是“tanα=$\frac{\sqrt{3}}{3}$”(  )条件.
A.必要不充分B.充分不必要
C.充分必要D.既不充分也不必要

分析 根据充分条件、必要条件的概念,以及tanα=$\frac{\sqrt{3}}{3}$时α的取值情况即可判断α=$\frac{π}{6}$是tanα=$\frac{\sqrt{3}}{3}$的什么条件.

解答 解:α=$\frac{π}{6}$时,tanα=$\frac{\sqrt{3}}{3}$;
tanα=$\frac{\sqrt{3}}{3}$时,α=$\frac{π}{6}$+kπ,k∈Z,所以不一定得到α=$\frac{π}{6}$;
∴α=$\frac{π}{6}$是tanα=$\frac{\sqrt{3}}{3}$的充分不必要条件.
故选:B.

点评 考查充分条件、必要条件以及充分不必要条件的概念,以及根据tanα的值能求α.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知数列{an}是公差不为零的等差数列a1=1,且a1,a2,a5成等比数列,{bn}为等比数列,数列{bn}的前n项和为Sn,${S_3}=\frac{13}{3}$,q=3.
(1)求数列{an},{bn}的通项公式;
(2)设cn=an•bn,求数列{cn}的前项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.四面体ABCD的四个顶点都在球O的球面上,AB=AD=CD=2,BD=2$\sqrt{2}$,BD⊥CD,平面ABD⊥平面BCD,则球O的体积为(  )
A.4$\sqrt{3}$πB.$\frac{\sqrt{3}}{2}$πC.$\frac{8\sqrt{2}}{3}$πD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设集合A=[0,$\frac{1}{2}$),B=[$\frac{1}{2}$,1],函数f(x)=$\left\{{\begin{array}{l}{x+\frac{1}{2},x∈A}\\{2(1-x),x∈B}\end{array}}$,若f(f(x0))∈A,则x0的取值范围是$(\frac{1}{4},\frac{5}{8})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,角A,B,C的对边分别是a,b,c,已知b=2,c=2$\sqrt{2}$,则C=$\frac{π}{4}$,则△ABC的面积为(  )
A.$2\sqrt{3}+2$B.$\sqrt{3}+1$C.$2\sqrt{3}-2$D.$\sqrt{3}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$,以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+$\frac{π}{4}$)=2$\sqrt{2}$.
(1)写出C1的普通方程和C2的直角坐标方程;
(2)设点P在C1上,点Q在C2上,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.为了得到函数y=cos(2x-$\frac{2π}{3}}$)的图象,可以将函数y=cos2x的图象(  )
A.向左平移$\frac{π}{6}$个单位长度B.向左平移$\frac{π}{3}$个单位长度
C.向右平移$\frac{π}{6}$个单位长度D.向右平移$\frac{π}{3}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若全集U={-2,-1,0,1,2},A={x∈Z|x2<3},则∁IA=(  )
A.{-2,2}B.{-2,0,2}C.{-2,-1,2}D.{-2,-1,0,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=(x2+ax-a)$\sqrt{x}$.
(1)若a=-4时,求函数f(x)的极值;
(2)若函数f(x)在区间(1,2)上单调递减,求实数a的取值范围.

查看答案和解析>>

同步练习册答案