分析 a≥$\frac{{2}^{x}-1}{{4}^{x}}$恒成立,只需求$\frac{{2}^{x}-1}{{4}^{x}}$的最大值即可.令令t=2x,f(t)=$\frac{t-1}{{t}^{2}}$,利用导数判断函数单调性,进而得出函数最大值.
解答 解:令t=2x 0<t≤1
∴$\frac{{2}^{x}-1}{{4}^{x}}$=$\frac{t-1}{{t}^{2}}$
令f(t)=$\frac{t-1}{{t}^{2}}$
∴f'(t)=$\frac{-t(t-2)}{{t}^{4}}$>0
∴f(t)=$\frac{t-1}{{t}^{2}}$递增,则f(t)最大值为f(1)=0
∴a≥0.
点评 考察了恒成立问题和利用导数求函数的最大值,属于常规题型,应熟练掌握.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com