精英家教网 > 高中数学 > 题目详情
6.设函数f(x)=$\left\{\begin{array}{l}{-x\\;x≤0}\\{{x}^{2}\\;x>0}\end{array}\right.$,若f(a)≥1,则a的取值范围是(-∞,-1]∪[1,+∞).

分析 讨论当a≤0时,当a>0时,解f(a)≥1,最后求并集即可得到.

解答 解:当a≤0时,f(a)≥1即为-a≥1,即a≤-1,可得a≤-1;
当a>0时,f(a)≥1即为a2≥1,即a≥1或a≤-1,可得a≥1.
综上可得a≥1或a≤-1.
故答案为:(-∞,-1]∪[1,+∞).

点评 本题考查分段函数的应用,考查不等式的解法,及化简运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.根据下列条件,判断△ABC有没有解,若有解,判断解的个数.
(1)a=5,b=4,A=120°;
(2)a=5,b=4,A=90°;
(3)a=10$\sqrt{6}$,b=20$\sqrt{3}$,A=45°;
(4)a=20$\sqrt{2}$,b=20$\sqrt{3}$,A=45°;
(5)a=4,b=$\frac{10\sqrt{3}}{3}$,A=60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知P={1,2,3,4,5},Q={3,4,5,6,7},记$\widehat{P}$={n|2n+1∈P,n∈N},$\widehat{Q}$={n|2n+1∈Q,n∈N},求($\widehat{P}$∩∁N$\widehat{Q}$)∪($\widehat{Q}$∩∁N$\widehat{P}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在三棱锥V-ABC中,点E∈VA,点F∈VC,经过EF作一个截面γ,使VB∥平面γ,试作平面γ与三棱锥V-ABC表面的交线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若m,n为两个正实数,且2m+8n-mn=0,则m+n的最小值为18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知四棱锥P-ABCD的底面是矩形.PA⊥AB,PA⊥AC,M,N分别是AB,PC的中点.
(1)证明:BC⊥面PAB;
(2)求证:MN⊥AB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{x,(x≤-2)}\\{x+1,(-2<x<4)}\\{3x,(x≥4)}\end{array}\right.$,若f(a)<-3,则a的取值范围是(-∞,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若全集U={(x,y)|x∈R,y∈R},集合A={(x,y)|$\frac{y-3}{x-2}$=1,x、y∈R},集合B={(x,y)|y≠x+1,x、y∈R},则∁U(A∪B)={(2,3)}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设集合A={x|$|\begin{array}{l}{x-a}\\{\;}\end{array}|$<1,x∈R}.B={x|$|\begin{array}{l}{x-b}\\{\;}\end{array}|$>2,x∈R},若A⊆B,则实数a、b满足的绝对值不等式是|a-b|≥3.

查看答案和解析>>

同步练习册答案