精英家教网 > 高中数学 > 题目详情
如图,在xOy平面上,点A(1,0),点B在单位圆上,∠AOB=θ(0<θ<π).
(1)若点B(-
3
5
4
5
),求tan(2θ+
π
4
)的值;
(2)若
OA
+
OB
=
OC
,四边形OACB的面积用Sθ表示,求Sθ+
OA
OC
的取值范围.
考点:任意角的三角函数的定义
专题:三角函数的求值
分析:(1)由题意利用任意角的三角函数的定义可得tanθ=
y
x
的值,可得tan2θ=
2tanθ
1-tan2θ
 的值,进而求得tan(2θ+
π
4
)的值.
(2)由题意可得四边形OACB为菱形,求得Sθ+
OA
OC
=1×sin(π-θ)+
OA
•(
OA
+
OB
)
=1+
2
sin(θ+
π
4
),根据 0<θ<π,利用正弦函数的定义域和值域求得Sθ+
OA
OC
的取值范围.
解答: 解:(1)由题意可得tanθ=
y
x
=
4
5
-
3
5
=-
4
3

∴tan2θ=
2tanθ
1-tan2θ
=
24
7

∴tan(2θ+
π
4
)=
tan2θ+1
1-tan2θ×1
=-
31
17

(2)∵
OA
+
OB
=
OC
,OA=OB,则四边形OACB为菱形,它的面积用Sθ表示,
则 Sθ+
OA
OC
=1×sin(π-θ)+
OA
•(
OA
+
OB
)
=sinθ+1+1×1×cosθ
=1+sinθ+cosθ=1+
2
sin(θ+
π
4
).
∵0<θ<π,∴
π
4
<θ+
π
4
4

∴-
2
2
<sin(θ+
π
4
)≤1,1+
2
sin(θ+
π
4
)∈(0,1+
2
].
点评:本题主要考查任意角的三角函数的定义,两角和的正弦、正切公式,正弦函数的定义域和值域,属于中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

由曲线y=
1
x
,直线y=x,x=e所围成的封闭图形的面积S=(  )
A、
1
2
e2
-1
B、
1
2
e2
-
3
2
C、
3
2
-
1
2
e2
D、
1
2
e2
-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

9人成一排,规定甲、乙之间必须有四个人,问有多少种不同的排法?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的长轴长为2
2
,离心率为
2
2

(1)求椭圆C的方程;
(2)点B为椭圆C的下顶点,过点B的直线交椭圆C于另一点A(异于上顶点),且AB中点E在直线y=x上,
(ⅰ)求直线AB的方程;
(ⅱ)点P为椭圆C上异于A,B的任意一点,若直线AP,BP分别交直线y=x与M,N两点,证明:
OM
ON
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px(p>0)的焦点为F,若过点F且斜率为1的直线与抛物线相交于M,N两点,且|MN|=8.
(1)求抛物线C的方程;
(2)设直线l为抛物线C的切线,且l∥MN,P为l上一点,求
PM
PN
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设正项数列{an}的前n项和为Sn,数列{Sn}的前n项积为Tn,且Sn+Tn=1.
(1)求a1,S2
(2)求证:数列{
1
Tn
}是等差数列;
(3)试求数列{
1
an
}中最接近2012的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

从一组共7名学生中选男生2人,女生2人参加三种不同的活动,要求每人参加一种且每种活动都有人参加的选法有648种,问该组学生中男女生各有多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},满足a1=4,an+1=5nan,求数列{an}通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆柱M的底面圆的半径与球O的半径相同,若圆柱M的高与球O直径相等,则它们的体积之比V圆柱:V=
 
(结果用数值作答).

查看答案和解析>>

同步练习册答案