精英家教网 > 高中数学 > 题目详情
知函数
(1)求函数的反函数
(2)若时,不等式恒成立,试求实数的范围.
(1);(2)
(1)因为,所以:
得: 解得:
所以函数的反函数是
(2)不等式恒成立
恒成立
即:恒成立
即:恒成立
所以:
解得:
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某商店经销一种奥运纪念品,据预测,在元旦后的20天内的每天销售量(件)与价格(元)均为时间t(天)的函数,且第t天的销售量近似满足g(t)=80-2t(件),第t天的价格近似满足(元).
(1)试写出该纪念品的日销售额y与时间t(0≤t≤20)的函数关系式;
(2)求该纪念品的日销售额y的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如果是函数的一个极值,称点是函数的一个极值点.已知函数
(1)若函数总存在有两个极值点,求所满足的关系;
(2)若函数有两个极值点,且存在,求在不等式表示的区域内时实数的范围.
(3)若函数恰有一个极值点,且存在,使在不等式表示的区域内,证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在一个圆形波浪实验水池的中心有三个振动源,假如不计其它因素,在t秒内,它们引发的水面波动可分别由函数描述。如果两个振动源同时启动,则水面波动由两个函数的和表达。在某一时刻使这三个振动源同时开始工作,那么,原本平静的水面将呈现怎样的状态,请说明理由

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(I)求函数的最小正周期;
(II)当时,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(南京市2002年二模)某公司生产的A型商品通过租赁柜台进入某商场销售.第一年,商 场为吸引厂家,决定免收该年管理费,因此,该年A型商品定价为每件70元,销售量为 11.8万件.第二年,商场开始对该商品征收比率为p%的管理费(即每销售100元要征收p元),于是该商品的定价上升为每件元,预计年销售量将减少p万件.
(1)将第二年商场对商品征收的管理费y(万元)表示成p的函数,并指出这个函数的定义域;
(2)要使第二年商场在此项经营中收取的管理费不少于14万元,则商场对该商品征收管理费的比率p%的范围是多少?
(3)第二年,商场在所收费不少于14万元的前提下,要让厂家获得最大销售金额,则p 应为多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某地有三家工厂,分别位于矩形ABCD的顶点AB,及CD的中点P处,已知km, ,为了处理三家工厂的污水,现要在矩形ABCD的区域上(含边界),且AB与等距离的一点O处建造一个污水处理厂,并铺设排污管道AOBOOP,设排污管道的总长为ykm。
(I)按下列要求写出函数关系式:
①设,将表示成的函数关系式;
②设,将表示成的函数关系式。
(Ⅱ)请你选用(I)中的一个函数关系式,确定污水处理厂的位置,使三条排水管道总长度最短。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

造船厂年造船量20艘,造船艘产值函数为(单位:万元),成本函数(单位:万元),又在经济学中,函数的边际函数定义为
(1)求利润函数及边际利润函数(利润=产值—成本)
(2)问年造船量安排多少艘时,公司造船利润最大
(3)边际利润函数的单调递减区间

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若存在实常数,使得函数对其定义域上的任意实数分别满足:,则称直线的“隔离直线”.已知,(其中为自然对数的底数),根据你的数学知识,推断间的隔离直线方程为                 .

查看答案和解析>>

同步练习册答案