精英家教网 > 高中数学 > 题目详情
在一个圆形波浪实验水池的中心有三个振动源,假如不计其它因素,在t秒内,它们引发的水面波动可分别由函数描述。如果两个振动源同时启动,则水面波动由两个函数的和表达。在某一时刻使这三个振动源同时开始工作,那么,原本平静的水面将呈现怎样的状态,请说明理由
同解析

 
即三个振动源产生的振动被相互抵消,所以,原本平静的水面仍保持平静。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知函数有下列性质:“若
,使得”成立。
(1)利用这个性质证明唯一;
(2)设A、B、C是函数图象上三个不同的点,试判断△ABC的形状,并说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将函数y=3sin(x-θ)的图象F按向量(,3)平移得到图象F′,若F′的一条对称轴是直线x=,则θ的一个可能取值是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数是定义在上的偶函数,当时,
(1)求当的解析式;
(2)试确定函数的单调区间,并证明你的结论;
(3)若,证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若函数的零点有且只有一个,求的值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求的定义域;
(2)讨论的奇偶性;
(3)讨论上的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

知函数
(1)求函数的反函数
(2)若时,不等式恒成立,试求实数的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

备选题:已知函数是定义在上的减函数,并且满足
①求的值;
②解不等式:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

佛山某公司生产陶瓷,根据历年的情况可知,生产陶瓷每天的固定成本为14000元,每生产一件产品,成本增加210元.已知该产品的日销售量与产量之间的关系式为
,每件产品的售价与产量之间的关系式为

(Ⅰ)写出该陶瓷厂的日销售利润与产量之间的关系式;
(Ⅱ)若要使得日销售利润最大,每天该生产多少件产品,并求出最大利润.

查看答案和解析>>

同步练习册答案