精英家教网 > 高中数学 > 题目详情

【题目】某企业生产A,B两种产品,生产每一吨产品所需的劳动力、煤和电耗如表:

产品品种

劳动力(个)

煤(吨)

电(千瓦)

A产品

3

9

4

B产品

10

4

5

已知生产每吨A产品的利润是7万元,生产每吨B产品的利润是12万元,现因条件限制,该企业仅有劳动力300个,煤360吨,并且供电局只能供电200千瓦,试问该企业如何安排生产,才能获得最大利润?

【答案】解:设生产A,B两种产品分别为x,y吨,利润为z万元,
依题意可得: ,目标函数为z=7x+12y,
画出可行域如图:6﹣2阴影部分所示,
当直线7x+12y=0向上平移,经过M(20,24)时z取得最大值,
所以该企业生产A,B两种产品分别为20吨与24吨时,获利最大.

【解析】根据已知条件列出约束条件,与目标函数利用线性规划求出最大利润.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆O:x2+y2=2,直线l:y=kx﹣2.
(1)若直线l与圆O交于不同的两点A,B,且 ,求k的值;
(2)若 ,P是直线l上的动点,过P作圆O的两条切线PC,PD,切点分别为C,D,求证:直线CD过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1= ,an+1= (n∈N*).
(1)设bn= ﹣1,证明:数列{bn}是等比数列,并求数列{an}的通项公式an
(2)记数列{nbn}的前n项和为Tn , 求证:Tn<4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,分别根据下列条件解三角形,其中有两解的是(
A.a=7,b=14,A=30°
B.b=4,c=5,B=30°
C.b=25,c=3,C=150°
D.a= ,b= ,B=60°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位拟建一个扇环形状的花坛(如图所示),按设计要求扇环的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为x米,圆心角为θ(弧度).
(1)求θ关于x的函数关系式;
(2)已知对花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用之比为y,求y关于x的函数关系式,并求出y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin(ωx+ )﹣1(ω>0)的图象向右平移 个单位后与原图象重合,则ω的最小值是(
A.6
B.3
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列{an}满足a1=1,(n+1)a2n+1+an+1an﹣na =0,数列{bn}的前n项和为Sn且Sn=1﹣bn
(1)求{an}和{bn}的通项;
(2)令cn= , ①求{cn}的前n项和Tn
②是否存在正整数m满足m>3,c2 , c3 , cm成等差数列?若存在,请求出m;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新课标要求学生数学模块学分认定由模块成绩决定,模块成绩由模块考试成绩和平时成绩构成,各占50%,若模块成绩大于或等于60分,获得2学分,否则不能获得学分(为0分),设计一算法,通过考试成绩和平时成绩计算学分,并画出程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,数列{an}的前n项和为Sn , 且an=f( ),则S2017=(
A.1008
B.1010
C.
D.2019

查看答案和解析>>

同步练习册答案