【题目】如图,四边形ABCD是梯形,AD∥BC,∠BAD=90°,四边形CC1D1D为矩形,已知AB⊥BC1,AD=4,AB=2,BC=1.
(I)求证:BC1∥平面ADD1;
(II)若DD1=2,求平面AC1D1与平面ADD1所成的锐二面角的余弦值;
(III)设P为线段C1D上的一个动点(端点除外),判断直线BC1与直线CP能否垂直?并说明理由.
【答案】(I)证明见解析;(II);(III)直线BC1与CP不可能垂直.
【解析】试题分析:(1)先根据线面平行的判定定理证明平面平面,再由面面垂直的判定定理可得平面平面,根据面面平行的性质可得结果;(2)先证明平面,过在底面中作,所以, 两两垂直,以分别为轴、轴和轴,建立空间直角坐标系,求出平面与平面的法向量,利用空间向量夹角余弦公式可得结果;(3)利用反证法,若两直线垂直,根据向量垂直数量积为零可得到点不在线段上,从而假设不成立.
试题解析:(I)证明:由CC1D1D为矩形,得CC1∥DD1,又因为DD1平面ADD1,CC1平面ADD1,
所以CC1∥平面ADD1,
同理BC∥平面ADD1,又因为BCCC1=C,所以平面BCC1∥平面ADD1,
又因为BC1平面BCC1,所以BC1∥平面ADD1.
(II).由平面ABCD中,AD∥BC,∠BAD=90°,得AB⊥BC,又因为AB⊥BC1,BCBC1=B,所以AB⊥平面BCC1,所以AB⊥CC1,又因为四边形CC1D1D为矩形,且底面ABCD中AB与CD相交一点,所以CC1⊥平面ABCD,因为CC1∥DD1,所以DD1⊥平面ABCD.
过D在底面ABCD中作DM⊥AD,所以DA,DM,DD1两两垂直,以DA,DM,DD1分别为x轴、y轴和z轴,如图建立空间直角坐标系,
则D(0,0,0),A(4,0,0),B(4,2,0),C(3,2,0),C1(3,2,2),D1(0,0,2),
所以=(-l,2,2),=(-4,0,2).
设平面AC1D1的一个法向量为m=(x,y,z),
由m·=0,m·=0,得
令x=2,得m=(2,-3,4)
易得平面ADD1的法向量n=(0,1,0).
所以cos<m,n>=.
即平面AC1D1与平面ADD1所成的锐二面角的余弦值为
(III)结论:直线BC1与CP 不可能垂直,
证明:设DD1=m(m>0),= (∈(0,1)),
由B(4,2,0),C(3,2,0),C1(3,2,m),D(0,0,0),
得=(-l,0,m),=(3,2,m),= =(3,2,m),=(-3,-2,0),=+=(3-3,2-2,m).
若BC1⊥CP,则·=-(3-3)+m2=0,即(m2-3)=-3,因为≠0,
所以m2=-+3>0,解得>1,这与0<<l矛盾.
所以直线BC1与CP不可能垂直.
【方法点晴】本题主要考查线面平行的判定定理利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.
科目:高中数学 来源: 题型:
【题目】某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店
①第一天售出但第二天未售出的商品有______种;
②这三天售出的商品最少有_______种.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校艺术节对同一类的,,,四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“是或作品获得一等奖”;
乙说:“作品获得一等奖”;
丙说:“,两项作品未获得一等奖”;
丁说:“是作品获得一等奖”.
若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学有初中学生1800人,高中学生1200人.为了解学生本学期课外阅读时间,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们课外阅读时间,然后按“初中学生”和“高中学生”分为两组,再将每组学生的阅读时间(单位:小时)分为5组:[0,10),[10,20),[20,30),[30,40),[40,50],并分别加以统计,得到如下图所示的频率分布直方图.
(I)写出a的值;
(II)试估计该校所有学生中,阅读时间不小于30个小时的学生人数;
(III)从阅读时间不足10个小时的样本学生中随机抽取3人,并用X表示其中初中生的人数,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市在进行创建文明城市的活动中,为了解居民对“创文”的满意程度,组织居民给活动打分(分数为整数.满分为100分).从中随机抽取一个容量为120的样本.发现所有数据均在内.现将这些分数分成以下6组并画出了样本的频率分布直方图,但不小心污损了部分图形,如图所示.观察图形,回答下列问题:
(1)算出第三组的频数.并补全频率分布直方图;
(2)请根据频率分布直方图,估计样本的众数、中位数和平均数.(每组数据以区间的中点值为代表)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线(为参数),曲线,将的横坐标伸长为原来的2倍,纵坐标缩短为原来的得到曲线.
(1)求曲线的普通方程,曲线的直角坐标方程;
(2)若点为曲线上的任意一点,为曲线上的任意一点,求线段的最小值,并求此时的的坐标;
(3)过(2)中求出的点做一直线,交曲线于两点,求面积的最大值(为直角坐标系的坐标原点),并求出此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数满足如下条件:
①函数的最小值为,最大值为9;
②且;
③若函数在区间上是单调函数,则的最大值为2.
试探究并解决如下问题:
(Ⅰ)求,并求的值;
(Ⅱ)求函数的图象的对称轴方程;
(Ⅲ)设是函数的零点,求的值的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列各一元二次不等式中,解集为空集的是( )
A.(x+3)(x﹣1)>0B.(x+4)(x﹣1)<0
C.x2﹣2x+3<0D.2x2﹣3x﹣2>0
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com