精英家教网 > 高中数学 > 题目详情
如图,正方形ADEF与梯形ABCD所在的闰面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,M为CE的中点.
(I)求证:BM∥平面ADEF;
(Ⅱ)求平面BEC与平面ADEF所成锐二面角的余弦值.
考点:二面角的平面角及求法,直线与平面平行的判定
专题:计算题,证明题,转化思想,空间位置关系与距离,空间角
分析:(I)取DE中点N,连接MN,AN,由三角形中位线定理,结合已知中AB∥CD,AB=AD=2,CD=4,易得四边形ABMN为平行四边形,所以BM∥AN,再由线面平面的判定定理,可得BM∥平面ADEF;
(II)以D为原点,DA,DC,DE所在直线为x,y,z轴,建立空间直角坐标系,分别求出平面BEC与平面ADEF的法向量,代入向量夹角公式,即可求出平面BEC与平面ADEF所成锐二面角的余弦值.
解答: 证明:(I)取DE中点N,连接MN,AN
在△EDC中,M、N分别为EC,ED的中点,所以MN∥CD,且MN=
1
2
CD.
由已知AB∥CD,AB=
1
2
CD,所以MN∥AB,且MN=AB.
所以四边形ABMN为平行四边形,所以BM∥AN
又因为AN?平面ADEF,
且BM?平面ADEF,
所以BM∥平面ADEF.(4分)
(II)以D为原点,DA,DC,DE所在直线为x,y,z轴,建立空间直角坐标系.
B(2,2,0),C(0,4,0),E(0,0,2),平面ADEF的一个法向量为
m
=(0,1,0).
n
=(x,y,z)为平面BEC的一个法向量,因为
BC
=(-2,2,0),
CE
=(0,-4,2)
-2x+2y=0 
-4y+2z=0
令x=1,得y=1,z=2
所以
n
=(1,1,2)为平面BEC的一个法向量
设平面BEC与平面ADEF所成锐二面角为θ
则cosθ=
n
m
|
n
||
m
|
=
6
6

所以平面BEC与平面ADEF所成锐二面角为余弦值为
6
6
点评:本题考查的知识点是二面角的平面角及求法,直线与平面平行的判定,平面与平面垂直的判定,熟练掌握空间直线与平面不同位置关系(平行和垂直)的判定定理
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某同学连续郑2次骰子,并依次记下正面朝上的点数分别为x,y,记点P(x,y),则点P落在圆C:x2+y2=16内部的概率是(  )
A、
1
6
B、
1
3
C、
2
9
D、
5
18
?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正△ABC的边长为2,
BD
=4
BC
,则
AD
AC
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,过圆ρ=4cosθ的圆心,且垂直于极轴的直线的极坐标方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学举行了一次“环保知识竞赛”,全校学生参加了这次竞赛.为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:
频率分布表
组别 分组 频数 频率
第1组 [50,60) 8 0.16
第2组 [60,70) a
第3组 [70,80) 20 0.40
第4组 [80,90) 0.08
第5组 [90,100] 2 b
合计
(1)写出a,b,x,y的值;
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动,求所抽取的2名同学来自同一组的概率;
(3)在(2)的条件下,设ξ表示所抽取的2名同学中来自第5组的人数,求ξ的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

汽车租赁公司为了调查A,B两种车型的出租情况,现随机抽取了这两种车型各100辆汽车,分别统计了每辆车某个星期内的出租天数,统计数据如下表:
A型车
出租天数 1 2 3 4 5 6 7
车辆数 5 10 30 35 15 3 2
B型车
出租天数 1 2 3 4 5 6 7
车辆数 14 20 20 16 15 10 5
( I)从出租天数为3天的汽车(仅限A,B两种车型)中随机抽取一辆,估计这辆汽车恰好是A型车的概率;
(Ⅱ)根据这个星期的统计数据,估计该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率;
(Ⅲ)如果两种车型每辆车每天出租获得的利润相同,该公司需要从A,B两种车型中购买一辆,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线mx+3y-4=0与圆(x+2)2+y2=5相交于A、B两点,若|AB|=2,则实数m的值为(  )
A、
5
2
B、0或-
5
4
C、±
5
2
D、
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:

点A(1,2,3)在坐标平面yOz内的射影是点B的坐标是(  )
A、(0,2,3)
B、(1,0,3)
C、(1,2,0)
D、(1,0,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)是定义在R上的偶函数,且对任意实数x,都有f(x+1)=f(x-1)成立.已知当x∈[1,2]时,f(x)=logax.
(1)求x∈[-1,1]时,函数f(x)的表达式;
(2)若函数f(x)的最大值为
1
2
,在区间[-1,3]上,解关于x的不等式f(x)>
1
4

查看答案和解析>>

同步练习册答案