精英家教网 > 高中数学 > 题目详情
3.函数$f(x)=\frac{1}{{\sqrt{ln(5-2x)}}}+\sqrt{{e^x}-1}$的定义域为(  )
A.[0,+∞)B.(-∞,2]C.[0,2]D.[0,2)

分析 直接由根式内部的对数式大于等于0,分式的分母不等于0,列出不等式组,求解即可得答案.

解答 解:由$\left\{\begin{array}{l}{ln(5-2x)>0}\\{{e}^{x}-1≥0}\end{array}\right.$,
解得0≤x<2.
∴函数$f(x)=\frac{1}{{\sqrt{ln(5-2x)}}}+\sqrt{{e^x}-1}$的定义域为:[0,2).
故选:D.

点评 本题考查了函数的定义域及其求法,考查了不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.函数y=$\frac{3x-1}{3x+1}$的值域是{y|y≠1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=lnx.若直线y=2x+p(p∈R)是函数y=f(x)图象的一条切线,则实数p的值为$ln\frac{1}{2}-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图所示,不能表示函数图象的是(  )
A.B.②③④C.①③④D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)已知集合A={x|3<x<7},B={x|2<x<10},求A∪B,A∩B,∁RA
(2)计算下列各式
①$2{log_5}25+{10^{lg\sqrt{3}}}+ln{e^{({1-\sqrt{3}})}}+{({\sqrt{2}-1})^0}$
②(2a${\;}^{\frac{2}{3}}$b${\;}^{\frac{1}{2}}$)(-6a${\;}^{\frac{1}{2}}$b${\;}^{\frac{1}{3}}$)÷(-3a${\;}^{\frac{1}{6}}$b${\;}^{\frac{5}{6}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知在△ABC中,a,b,c是角A,B,C的对边,向量$\overrightarrow m=(a-b,sinA+sinC)$与向量$\overrightarrow n=(a-c,sin(A+C))$共线.
(1)求角C的值;
(2)若$\overrightarrow{AC}•\overrightarrow{CB}=-27$,求$|\overrightarrow{AB}|$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=lnx+2x-6,若实数x0是函数f(x)的零点,且0<x1<x0,则f(x1)的值(  )
A.恒为正B.等于零C.恒为负D.不小于零

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列命题中是假命题的是(  )
A.若a>0,则2a>1B.若x2+y2=0,则x=y=0
C.若b2=ac,则a,b,c成等比数列D.若a+c=2b,则a,b,c成等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合M={x|x-2>0,x∈R},N={y|y=$\sqrt{{x}^{2}+1}$,x∈R},则M∩N=(  )
A.{x|x≥1}B.{x|1≤x<2}C.{x|x>2}D.{x|x>2或x<0}

查看答案和解析>>

同步练习册答案