分析 求出f(x)的导数,求出切点的坐标,代入切线方程求出p的值即可.
解答 解:f(x)=lnx的定义域是(0,+∞),f′(x)=$\frac{1}{x}$,
若直线y=2x+p(p∈R)是函数y=f(x)图象的一条切线,
∴$\frac{1}{x}$=2,解得:x=$\frac{1}{2}$,y=f(x)=ln$\frac{1}{2}$=-ln2,
将($\frac{1}{2}$,-ln2)代入y=2x+p,得:p=y-2x=-$ln\frac{1}{2}-1$.
故答案为$ln\frac{1}{2}-1$.
点评 本题考查函数的导数的应用,考查导数的几何意义,考查分析问题解决问题的能力,转化思想的应用.
科目:高中数学 来源: 题型:选择题
| x | 2.01 | 3 | 4.01 | 5.1 | 6.12 |
| y | 3 | 8.01 | 15 | 23.8 | 36.04 |
| A. | y=2x+1-1 | B. | y=x2-1 | C. | y=2log2x | D. | y=x3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,+∞) | B. | (-∞,2] | C. | [0,2] | D. | [0,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x=1 | B. | x=$\frac{1}{2}$ | C. | x=-$\frac{1}{2}$ | D. | x=-1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com