精英家教网 > 高中数学 > 题目详情
6.在平面直角坐标系xOy中,点A(1,0),B(4,0),若直线x-y+m=0上存在点P,使得2PA=PB,则实数m的取值范围是[-2$\sqrt{2}$,2$\sqrt{2}$].

分析 设P(x,x+m),由2PA=PB,可得4|PA|2=|PB|2,利用两点之间的距离公式化为:(x+m)2=4-x2,可得:m=-x±$\sqrt{4-{x}^{2}}$,x∈[-2,2].通过三角函数代换即可得出.

解答 解:设P(x,x+m),
∵2PA=PB,
∴4|PA|2=|PB|2
∴4(x-1)2+4(x+m)2=(x-4)2+(x+m)2
化为(x+m)2=4-x2
∴4-x2≥0,解得x∈[-2,2],
∴m=-x±$\sqrt{4-{x}^{2}}$,令x=2cosθ,θ∈[0,π],
∴m=-2cosθ±2sinθ
=±2$\sqrt{2}$sin(θ±$\frac{π}{4}$)∈[-2$\sqrt{2}$,2$\sqrt{2}$],
实数m的取值范围是[-2$\sqrt{2}$,2$\sqrt{2}$],
故答案为[-2$\sqrt{2}$,2$\sqrt{2}$].

点评 本题考查了两点之间的距离公式、和差化积、三角函数的求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知集合A={x|(a-1)x2-x+2=0}有且只有一个元素,则a=1或$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l1:(m+1)x+y+m-2=0和直线l2:2x+my-1=0(m∈R).
(1)当l1⊥l2时,求实数m的值;
(2)当l1∥l2时,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=lnx.若直线y=2x+p(p∈R)是函数y=f(x)图象的一条切线,则实数p的值为$ln\frac{1}{2}-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{{2}^{x}+b}{{2}^{x}+a}$,是定义在R上的奇函数.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图所示,不能表示函数图象的是(  )
A.B.②③④C.①③④D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)已知集合A={x|3<x<7},B={x|2<x<10},求A∪B,A∩B,∁RA
(2)计算下列各式
①$2{log_5}25+{10^{lg\sqrt{3}}}+ln{e^{({1-\sqrt{3}})}}+{({\sqrt{2}-1})^0}$
②(2a${\;}^{\frac{2}{3}}$b${\;}^{\frac{1}{2}}$)(-6a${\;}^{\frac{1}{2}}$b${\;}^{\frac{1}{3}}$)÷(-3a${\;}^{\frac{1}{6}}$b${\;}^{\frac{5}{6}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=lnx+2x-6,若实数x0是函数f(x)的零点,且0<x1<x0,则f(x1)的值(  )
A.恒为正B.等于零C.恒为负D.不小于零

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(文)已知函数f(x)=sin2ωx+$\sqrt{3}$sinωxcosωx(ω>0)的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)在区间[0,$\frac{2π}{3}$]上的取值范围.

查看答案和解析>>

同步练习册答案