精英家教网 > 高中数学 > 题目详情
16.(文)已知函数f(x)=sin2ωx+$\sqrt{3}$sinωxcosωx(ω>0)的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)在区间[0,$\frac{2π}{3}$]上的取值范围.

分析 (Ⅰ)利用二倍角三角函数公式和辅助角公式化简,得到f(x)=sin(2ωx-$\frac{π}{6}$)+$\frac{1}{2}$.再由三角函数的周期公式求出ω;
(Ⅱ)由(Ⅰ)中的正弦函数的图象的性质来求函数f(x)在区间[0,$\frac{2π}{3}$]上的取值范围.

解答 解:(Ⅰ)f(x)=sin2ωx+$\sqrt{3}$sinωxcosωx(ω>0)
=$\frac{1-2cos2ωx}{2}$+$\frac{\sqrt{3}}{2}$sin2ωx
=$\frac{\sqrt{3}}{2}$sin2ωx-$\frac{1}{2}$cos2ωx+$\frac{1}{2}$
=sin(2ωx-$\frac{π}{6}$)+$\frac{1}{2}$.
因为函数f(x)的最小正周期为π,且ω>0,
所以$\frac{2π}{ω}$=π,
解得ω=1.
(Ⅱ)由(Ⅰ)得f(x)=sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$.
因为x∈[0,$\frac{2π}{3}$],
所以2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{7π}{6}$],
所以-$\frac{1}{2}$≤sin(2x-$\frac{π}{6}$)≤1.
所以0≤sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$≤$\frac{3}{2}$.

点评 本题给出三角函数表达式,求函数的周期与单调区间,并求闭区间上的最值.着重考查了三角恒等变换、三角函数的图象与性质等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.在平面直角坐标系xOy中,点A(1,0),B(4,0),若直线x-y+m=0上存在点P,使得2PA=PB,则实数m的取值范围是[-2$\sqrt{2}$,2$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设数列{an}满足a1=2,an+1=2-$\frac{1}{{a}_{n}}$(n∈N*),那么a2是(  )
A.2B.$\frac{3}{2}$C.$\frac{4}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知f(x+1)为偶函数,则函数y=f(2x)的图象的对称轴是(  )
A.x=1B.x=$\frac{1}{2}$C.x=-$\frac{1}{2}$D.x=-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.以极点为原点,极轴为x轴的正半轴,单位长度一致建立平面直角坐标系,曲线C:$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),直线l:极坐标方程为ρsin(θ-$\frac{π}{3}$)=1.
(Ⅰ)求曲线C的普通方程,直线l的直角坐标方程;
(Ⅱ)求曲线C上的点到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题中,正确的是(  )
A.sin($\frac{3π}{2}$+α)=cosαB.常数数列一定是等比数列
C.若0<a<$\frac{1}{b}$,则ab<1D.x+$\frac{1}{x}$≥2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设点P是曲线y=x3-$\sqrt{3}$x+$\frac{2}{3}$上的任意一点,在P点处切线倾斜角a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.521化为二进制数是1000001001(2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在(x-1)n(n∈N+)的二项展开式中,若只有第4项的二项式系数最大,则${({2\sqrt{x}-\frac{1}{{\sqrt{x}}}})^n}$的二项展开式中的常数项为(  )
A.960B.-160C.-560D.-960

查看答案和解析>>

同步练习册答案