精英家教网 > 高中数学 > 题目详情
(14分)如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900

(1)求证:PC⊥BC
(2)求点A到平面PBC的距离
(1)∵PD⊥平面ABCD,∴,又,∴,∴
(2)设点A到平面PBC的距离为
,∴
容易求出
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题


(示范性高中做)
已知正方体的棱长为1,点是棱的中点,点是棱的中点,点是上底面的中心.
(Ⅰ)求证:MO平面NBD
(Ⅱ)求二面角的大小;
(Ⅲ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题



本题满分15分)如图,在矩形中,点分别
在线段上,.沿直线
翻折成,使平面. 
(Ⅰ)求二面角的余弦值;
(Ⅱ)点分别在线段上,若沿直线将四
边形向上翻折,使重合,求线段
的长。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图5,是半径为a的半圆,AC为直径,点E为的中点,点B和点C为线段AD的三等分点.平面AEC外一点F满足,FE=a .

图5
(1)证明:EB⊥FD;
(2)已知点Q,R分别为线段FE,FB上的点,使得,求平面与平面所成二面角的正弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,三棱柱中,侧面底面,
,O中点.
(Ⅰ)证明:平面
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)在上是否存在一点,使得平面,若不存在,说明理由;若存在,
确定点的位置.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,已知直平行六面体ABCD-A1B1C1D1中,AD⊥BD,AD=BD=a,E是CC1的中点,A1D⊥BE.
(I)求证:A1D⊥平面BDE;
(II)求二面角B―DE―C的大小;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

斜三棱柱ABC- A1B1C1中,二面角C-A1A-B为120°,侧棱AA1于另外两条棱的距离分别为7cm、8cm,AA1=12cm,则斜三棱柱的侧面积为______      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在棱长为1的正方体中,分别为棱的中点,是侧面的中心,则空间四边形在正方体的六个面上的射影图形面积的最大值是( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体的棱长为3,点上,且,点在平面上,且动点到直线的距离与到点的距离相等,在平面直角坐标系中,动点的轨迹方程是               

查看答案和解析>>

同步练习册答案