精英家教网 > 高中数学 > 题目详情
如图,在棱长为1的正方体中,分别为棱的中点,是侧面的中心,则空间四边形在正方体的六个面上的射影图形面积的最大值是( )
A.B.C.D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在如图所示的几何体中,四边形是正方形,,,分别为的中点,且.

(Ⅰ) 求证:平面;
(Ⅱ)求三棱锥.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)如图,在四棱锥中,底面且边长为的菱形,侧面是等边三角形,且平面垂直于底面
(1)若的中点,求证:平面
(2)求证:
(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900

(1)求证:PC⊥BC
(2)求点A到平面PBC的距离

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,PA底面ABCD,点M是棱PC的中点,AMPBD.

(1)求PA的长
(2)证明PB平面AMD
(3)求棱PC与平面AMD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在底面是菱形的四棱锥P-ABC中,∠ABC=600PA=AC=aPB=PD=,点EPD上,且PE:ED=2:1.
(Ⅰ)证明PA⊥平面ABCD
(Ⅱ)求以AC为棱,EACDAC为面的二面角的大小.

题18图

 
 

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在长方体中,AB=AD=1,AA1=2,M是棱CC1的中点
(Ⅰ)求异面直线A1M和C1D1所成的角的正切值;
(Ⅱ)证明:平面ABM⊥平面A1B1M1
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

表面积为的球面上有三点ABC,∠ACB=60°,AB,则球心到截面ABC的距离及BC两点间球面距离最大值分别为                                  (  )
A.3,B.C.D.3,

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

表示平面,为直线,下列命题中为真命题的是                      (   )
A.B.
C.D.

查看答案和解析>>

同步练习册答案