精英家教网 > 高中数学 > 题目详情
如图所示,在长方体中,AB=AD=1,AA1=2,M是棱CC1的中点
(Ⅰ)求异面直线A1M和C1D1所成的角的正切值;
(Ⅱ)证明:平面ABM⊥平面A1B1M1
 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题


19. (本小题满分13分)
如右图所示,已知正方形和矩形所在的平面互相垂直,AF = 1,M是线段的中点.
(1)求证:平面
(2)求证:平面
(3)求二面角的大小.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,圆柱内有一个三棱柱,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O直径。

(Ⅰ)证明:平面平面
(Ⅱ)设AB=,在圆柱内随机选取一点,记该点取自于三棱柱内的概率为
(i)当点C在圆周上运动时,求的最大值;
(ii)记平面与平面所成的角为,当取最大值时,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分12分)在右图所示的多面体中,                               
下部为正方体, 点的延长线上,
分别为的重心.
(1)已知为棱上任意一点,求证:∥面
(2)求二面角的大小.  

  
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题



本题满分15分)如图,在矩形中,点分别
在线段上,.沿直线
翻折成,使平面. 
(Ⅰ)求二面角的余弦值;
(Ⅱ)点分别在线段上,若沿直线将四
边形向上翻折,使重合,求线段
的长。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图5,是半径为a的半圆,AC为直径,点E为的中点,点B和点C为线段AD的三等分点.平面AEC外一点F满足,FE=a .

图5
(1)证明:EB⊥FD;
(2)已知点Q,R分别为线段FE,FB上的点,使得,求平面与平面所成二面角的正弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

斜三棱柱ABC- A1B1C1中,二面角C-A1A-B为120°,侧棱AA1于另外两条棱的距离分别为7cm、8cm,AA1=12cm,则斜三棱柱的侧面积为______      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在棱长为1的正方体中,分别为棱的中点,是侧面的中心,则空间四边形在正方体的六个面上的射影图形面积的最大值是( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一个正方体纸盒展开后如图,在原正方体纸盒中有下列结论:
① 
② 角;
③ 是异面直线;

其中正确结论的序号是___________.

查看答案和解析>>

同步练习册答案