精英家教网 > 高中数学 > 题目详情
如图,圆柱内有一个三棱柱,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O直径。

(Ⅰ)证明:平面平面
(Ⅱ)设AB=,在圆柱内随机选取一点,记该点取自于三棱柱内的概率为
(i)当点C在圆周上运动时,求的最大值;
(ii)记平面与平面所成的角为,当取最大值时,求的值。

(Ⅰ)因为平面ABC,平面ABC,所以
因为AB是圆O直径,所以,又,所以平面
平面,所以平面平面
(Ⅱ)(i)设圆柱的底面半径为,则AB=,故三棱柱的体积为
=,又因为
所以=,当且仅当时等号成立,
从而,而圆柱的体积
=当且仅当,即时等号成立,
所以的最大值是
(ii)由(i)可知,取最大值时,,于是以O为坐标原点,建立空间直角坐标系(如图),则C(r,0,0),B(0,r,0),(0,r,2r),
因为平面,所以是平面的一个法向量,
设平面的法向量,由,故
得平面的一个法向量为,因为
所以
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在如图所示的几何体中,四边形是正方形,,,分别为的中点,且.

(Ⅰ) 求证:平面;
(Ⅱ)求三棱锥.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)如图,在四棱锥中,底面且边长为的菱形,侧面是等边三角形,且平面垂直于底面
(1)若的中点,求证:平面
(2)求证:
(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)

如图,在四棱锥中,⊥平面⊥平面.
(1) 证明:
(2) 点为线段上一点,求直线与平面所成角的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(.(9分)如图所示三棱锥P—ABC中,异面直线PABC所成的角为,二面角PBCA,△PBC和△ABC的面积分别为16和10,BC=4. 求:
(1)PA的长;(2)三棱锥P—ABC的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

、(10分)一个正三棱柱的底面边长是4,高是6,过下底面的一条边和该边所对的上底面的顶点作截面,求这个截面面积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是三个不同的平面,ab是两条不同的直线,给出下列4个命题:
①若ab,则ab; ②若abab,则;③若abab,则;④若ab在平面内的射影互相垂直,则ab. 其中正确命题是(  )
A.③B.④C.①③D.②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共12分)直四棱柱中,底面是边长为的正方形,侧棱长为4。
(1)求证:平面平面
(2)求点到平面的距离d;
(3)求三棱锥的体积V。
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在长方体中,AB=AD=1,AA1=2,M是棱CC1的中点
(Ⅰ)求异面直线A1M和C1D1所成的角的正切值;
(Ⅱ)证明:平面ABM⊥平面A1B1M1
 

查看答案和解析>>

同步练习册答案