精英家教网 > 高中数学 > 题目详情
(本小题满分12分)

如图,在四棱锥中,⊥平面⊥平面.
(1) 证明:
(2) 点为线段上一点,求直线与平面所成角的取值范围.

18.解法1:取的中点,连.

,∴. 又⊥平面.
为原点建立空间直角坐标系,如图,
则已知条件有:
……………………………………2分

设平面的法向量为
则由

解得.可取…………………4分
⊥平面. ∴.又,∴⊥平面
∴平面的法向量可取为
,∴. ………6分
(2)平面的一个法向量记为
,即
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如右图所示,已知正方形和矩形所在的平面互相垂直,AF = 1,M是线段的中点.
(1)求证:平面
(2)求证:平面
(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,圆柱内有一个三棱柱,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O直径。

(Ⅰ)证明:平面平面
(Ⅱ)设AB=,在圆柱内随机选取一点,记该点取自于三棱柱内的概率为
(i)当点C在圆周上运动时,求的最大值;
(ii)记平面与平面所成的角为,当取最大值时,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分12分)在右图所示的多面体中,                               
下部为正方体, 点的延长线上,
分别为的重心.
(1)已知为棱上任意一点,求证:∥面
(2)求二面角的大小.  

  
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图(1)在直角梯形中,=2,分别是的中点,现将沿折起,使平面平面(如图2).
(Ⅰ)求二面角的大小;
(Ⅱ)在线段上确定一点,使平面,并给出证明过程.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列说法中正确的有                (将正确说法的序号填入空格中)
①三条直线交于一点,过这三条直线的平面有且只有一个
②过一点有且只有一条直线与已知直线垂直
③分别和两条异面直线AB、CD同时相交的两条直线AC、BD一定是异面直线
④如图点P在面ABC内的射影为O,且PABC,PCAB,则点O为△ABC的垂心

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题


已知平面和两条直线a、b,则下列命题中正确的是
A  若a∥, a∥b,则b∥      B  若a⊥, b⊥,则a∥b
C  若a⊥, b⊥a,则b∥      D  若a∥, b∥,则b∥a

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

.体积为的球内有一个内接正三棱锥,球心恰好在底面正△内,一个动点从点出发沿球面运动,经过其余三点后返回,则经过的最短路程为__________

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于四面体ABCD,给出下列四个命题:
①若AB=AC,BD=CD,则BC⊥AD;  ②若AB=CD,AC=BD,则BC⊥AD;
③若AB⊥AC,BD⊥CD,则BC⊥AD;④若AB⊥CD,AC⊥BD,则BC⊥AD;
其中正确的命题的序号是(   )
A.①②B.②③C.②④D.①④

查看答案和解析>>

同步练习册答案