精英家教网 > 高中数学 > 题目详情
如图(1)在直角梯形中,=2,分别是的中点,现将沿折起,使平面平面(如图2).
(Ⅰ)求二面角的大小;
(Ⅱ)在线段上确定一点,使平面,并给出证明过程.
 
,点是线段的中点
解:
的中点,连
又平面 平面,且
平面,又平面,由三垂线定理,得
就是二面角的平面角.
中,
即二面角的大小为.
(2)当点是线段的中点时,有平面.证明过程如下:
的中点,,又,,
从而四点共面.
中,的中点,
平面,又
平面,即平面
解法二:
(1)建立如图所示的空间直角坐标系


设平面的法向量为,则
,取
又平面的法向量为
所以
即二面角的大小为.
(2)设

,平面
是线段的中点.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)如图,在四棱锥中,底面且边长为的菱形,侧面是等边三角形,且平面垂直于底面
(1)若的中点,求证:平面
(2)求证:
(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,棱柱ABCD-A1B1C1D1的底面ABCD为菱形,平面AA1C1C⊥平面ABCD.
(1)证明:BD⊥AA1
(2)证明:平面AB1C//平面DA1C1
(3)在直线CC1上是否存在点P,使BP//平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)

如图,在四棱锥中,⊥平面⊥平面.
(1) 证明:
(2) 点为线段上一点,求直线与平面所成角的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,PA底面ABCD,点M是棱PC的中点,AMPBD.

(1)求PA的长
(2)证明PB平面AMD
(3)求棱PC与平面AMD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

有四根长都为2的直铁条,若再选两根长都为a的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a的取值范围是
A.(0,B.(1,
C.(,D.(0,

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知平面,在内有4个点,在内有6个点,以这些点为顶点,最多可作     个三棱锥,在这些三棱锥中最多可以有     个不同的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下面四个命题:
  ①在空间中,过直线外一点只能作一条直线与该直线平行;
②“直线⊥平面内所有直线”的充要条件是“⊥平面”;
③“平面∥平面”的必要不充分条件是“内存在不共线三点到的距离相等”;
④若是异面直线,至少与中的一条相交.
其中正确命题的个数有 (    )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

18.(本小题满分12分)
如图,在四棱锥VABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,侧面VAD⊥底面ABCDVA=VDEAD的中点.
(Ⅰ)求证:平面VBE⊥平面VBC
(Ⅱ)当直线VB与平面ABCD所成的角为30°时,求面VBE与平面VCD所成锐二面角的大小.
 

查看答案和解析>>

同步练习册答案