精英家教网 > 高中数学 > 题目详情
18.(本小题满分12分)
如图,在四棱锥VABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,侧面VAD⊥底面ABCDVA=VDEAD的中点.
(Ⅰ)求证:平面VBE⊥平面VBC
(Ⅱ)当直线VB与平面ABCD所成的角为30°时,求面VBE与平面VCD所成锐二面角的大小.
 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图5,四棱锥中,底面为矩形,底面分别为的中点

(1)求证:
(2)若,求与面所成角的余弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图(1)在直角梯形中,=2,分别是的中点,现将沿折起,使平面平面(如图2).
(Ⅰ)求二面角的大小;
(Ⅱ)在线段上确定一点,使平面,并给出证明过程.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题14分)如图,在三棱锥SABC中,,O为BC的中点.
(I)求证:面ABC;
(II)求异面直线与AB所成角的余弦值;
(III)在线段AB上是否存在一点E,使二面角的平面角的余弦值为;若存在,求的值;若不存在,试说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


如图,DC⊥平面ABC,EB//DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE、AB的中点。
(I)证明:PQ//平面ACD;
(II)求异面直线AE与BC所成角的余弦值;
(III)求平面ACD与平面ABE所成锐二面角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥S—ABCD中,底面ABCD为矩形,SA⊥平面ABCD,二面角S—
CD—A的平面角为,M为AB中点,N为SC中点.
(1)证明:MN//平面SAD;
(2)证明:平面SMC⊥平面SCD;


 
  (3)若,求实数的值,使得直线SM与平面SCD所成角为

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将60个完全相同的球叠成正四面体球垛,使剩下的球尽可能少,那么剩余的球的个数是      

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若多面体的各个顶点都在同一球面上,则称这个多面体
内接于球.如图,设长方体内接于球
两点之间的球面距离
为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知在四棱锥P—ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E、F分别是AB、PD的中点。

(1)求证:AF//平面PEC;
(2)求PC与平面ABCD所成的角的大小;
(3)求二面角P—EC—D的大小。

查看答案和解析>>

同步练习册答案