精英家教网 > 高中数学 > 题目详情
将60个完全相同的球叠成正四面体球垛,使剩下的球尽可能少,那么剩余的球的个数是      
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知四边形是边长为的正方形,分别为的中点,沿向同侧折叠且与平面成直二面角,连接
(1)求证
(2)求平面与平面所成锐角的余弦值。
                                                                                                                   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


如图,已知四棱柱ABCD—A1B1C1D1中,A1D⊥底面ABCD,底面ABCD是边长为1的正方形,侧棱AA1=2。
(I)求证:C1D//平面ABB1A1
(II)求直线BD1与平面A1C1D所成角的正弦值;
(Ⅲ)求二面角D—A1C1—A的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD.SD=2,,E是SD上的点。

(Ⅰ)求证:AC⊥BE;
(Ⅱ)求二面角C—AS—D的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知平面,在内有4个点,在内有6个点,以这些点为顶点,最多可作     个三棱锥,在这些三棱锥中最多可以有     个不同的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个长方体共一个顶点的三个面的面积分别是,这个长方体对角线的长是( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

9.由“若直角三角形两直角边的长分别为,将其补成一个矩形,则根据矩形的对角线长可求得该直角三角形外接圆的半径为”. 对于“若三棱锥三条侧棱两两垂直,侧棱长分别为”,类比上述处理方法,可得该三棱锥的外接球半径为=    ▲   .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

18.(本小题满分12分)
如图,在四棱锥VABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,侧面VAD⊥底面ABCDVA=VDEAD的中点.
(Ⅰ)求证:平面VBE⊥平面VBC
(Ⅱ)当直线VB与平面ABCD所成的角为30°时,求面VBE与平面VCD所成锐二面角的大小.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平行四边形ABCD的对角线的交点为O,点P在平面ABCD外的一点,且PA="PC," PD="PB," 则PO与平面 ABCD的位置关系是( )
A.PO//平面 ABCDB.PO平面ABCD
C.PO与平面ABCD斜交D.PO⊥平面ABCD

查看答案和解析>>

同步练习册答案