精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
已知四边形是边长为的正方形,分别为的中点,沿向同侧折叠且与平面成直二面角,连接
(1)求证
(2)求平面与平面所成锐角的余弦值。
                                                                                                                   
(1)方法一:以EF的中点O为原点,OA为轴,OE为轴,OC为轴建立直角坐标系,则C(0 ,0 ,1),A(3 ,0 ,0),E(0 ,1 ,0),解正方形可得



……………………………………………………………………………… 6分
       (2)
设面ABE的法向量为
,得
,得一个法向量为,设锐二面角为
…………………………………… 12分
方法二(1)过D作于H,过B作于G.

取EF中点为O,连CO、AO

又GH//EF,……………………………………………………………… 6分
……………… 12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图5,四棱锥中,底面为矩形,底面分别为的中点

(1)求证:
(2)若,求与面所成角的余弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱锥中,底面边长是2,D是BC的中点,M在BB1上,且.

(1)求证:;      
(2)求三棱锥的体积;
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题14分)如图,在三棱锥SABC中,,O为BC的中点.
(I)求证:面ABC;
(II)求异面直线与AB所成角的余弦值;
(III)在线段AB上是否存在一点E,使二面角的平面角的余弦值为;若存在,求的值;若不存在,试说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)如图,四棱椎的底面为菱形,且平面的中点.
(1)求直线与平面所成角的正切值;
(2)在线段上是否存在一点,使成立?如果存在,求出的长;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分 )
已知四棱锥的底面是边长为2的正方形,
分别为的中点,
(Ⅰ)求直线与面所成角的正弦值;
(Ⅱ)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是不同的直线,是不同的平面,有以
下四个命题
① 若,则; ②若,则;
③ 若,则; ④若,则.
其中真命题的序号是(      )
A.②③B.①④C.①③D.②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将60个完全相同的球叠成正四面体球垛,使剩下的球尽可能少,那么剩余的球的个数是      

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若多面体的各个顶点都在同一球面上,则称这个多面体
内接于球.如图,设长方体内接于球
两点之间的球面距离
为________.

查看答案和解析>>

同步练习册答案