精英家教网 > 高中数学 > 题目详情
如图5,四棱锥中,底面为矩形,底面分别为的中点

(1)求证:
(2)若,求与面所成角的余弦值
(1)见解析(2)AC与平面AEF所成角的正弦值为
方法一:


(1)取PA中点G, 连结FG, DG


 ……(6分)
⑵设AC, BD交于O,连结FO.

BC=a, 则AB=a, ∴PA=a, DG=a=EF, ∴PB=2a, AF=a.
C到平面AEF的距离为h.
∵VC-AEF=VF-ACE, ∴ 
 ∴ 
AC与平面AEF所成角的正弦值为.
AC与平面AEF所成角为         …(12分)
方法二:以D为坐标原点,DA的长为单位,建立如图所示的直角坐标系,
(1)证明:
,其中,则



        …(6分)
(2)解:由
可得

则异面直线AC,PB所成的角为

AF为平面AEF内两条相交直线,

AC与平面AEF所成的角为
AC与平面AEF所成的角为        …(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图4,四棱锥P—ABCD中,底面ABCD是直角梯形,AB//CD,,AB=AD=2CD,侧面底面ABCD,且为等腰直角三角形,,M为AP的中点。
  (1)求证:
(2)求证:DM//平面PCB;
(3)求平面PAD与平面PBC所成锐二面角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,PA底面ABCD,点M是棱PC的中点,AMPBD.

(1)求PA的长
(2)证明PB平面AMD
(3)求棱PC与平面AMD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知四边形是边长为的正方形,分别为的中点,沿向同侧折叠且与平面成直二面角,连接
(1)求证
(2)求平面与平面所成锐角的余弦值。
                                                                                                                   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题









(1)求点到平面的距离;
(2)求与平面所成角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下面四个命题:
  ①在空间中,过直线外一点只能作一条直线与该直线平行;
②“直线⊥平面内所有直线”的充要条件是“⊥平面”;
③“平面∥平面”的必要不充分条件是“内存在不共线三点到的距离相等”;
④若是异面直线,至少与中的一条相交.
其中正确命题的个数有 (    )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

长方体的一个顶点三条棱长分别为1,2,3,该长方体的顶点都在同一个球面上,则这个球的表面积为(s=4)                                                                                               (   )
A.B.14C.56D.96

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

表示平面,为直线,下列命题中为真命题的是                      (   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

18.(本小题满分12分)
如图,在四棱锥VABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,侧面VAD⊥底面ABCDVA=VDEAD的中点.
(Ⅰ)求证:平面VBE⊥平面VBC
(Ⅱ)当直线VB与平面ABCD所成的角为30°时,求面VBE与平面VCD所成锐二面角的大小.
 

查看答案和解析>>

同步练习册答案