精英家教网 > 高中数学 > 题目详情
9.由“若直角三角形两直角边的长分别为,将其补成一个矩形,则根据矩形的对角线长可求得该直角三角形外接圆的半径为”. 对于“若三棱锥三条侧棱两两垂直,侧棱长分别为”,类比上述处理方法,可得该三棱锥的外接球半径为=    ▲   .
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)

如图,在直三棱柱中,AB=1,AC=2,,D,E分别是的中点.
(Ⅰ)证明:DE∥平面ABC;
(Ⅱ)求直线DE与平面所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)如图,四棱椎的底面为菱形,且平面的中点.
(1)求直线与平面所成角的正切值;
(2)在线段上是否存在一点,使成立?如果存在,求出的长;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图所示,空间直角坐标系中,直三棱柱,N、M分别是的中点

(1)试画出该直三棱柱的侧视图。并标注出相应线段长度值
(2)求证:直线AN与BM相交,并求二面角的余弦值
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

四面体ABCD中,有如下命题:①若AC⊥BD,AB⊥CD,则AD⊥BC;
②若E、F、G分别是BC、AB、CD的中点,则∠FEG的大小等于异面直线AC与BD所成角的大小;
③若四面体ABCD有内切球,则
④若四个面是全等的三角形,则ABCD为正四面体。
其中正确的是:  (填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将60个完全相同的球叠成正四面体球垛,使剩下的球尽可能少,那么剩余的球的个数是      

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正三棱锥和等腰三角形有类似的性质。在等腰三角形ABC中,AB=AC,顶点A在底边BC上的射影是D,则有结论BD=CD成立。正三棱锥P-ABC中,O是顶点P在底面ABC上的射影。结合等腰三角形的上述性质,写出一个你认为正确的结论                   ,(不写证明过程)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

高为5,底面边长为4的正三棱柱形容器(下有底),可放置最大球的半径是
A.B.2 C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题







(     )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案