精英家教网 > 高中数学 > 题目详情
已知F1,F2分别是双曲线
x2
16
-
y2
b2
=1的左、右焦点,以坐标原点O为圆心,|OF1|为半径的圆与双曲线在第一象限的交点为P,则当△PF1F2的面积等于16时,双曲线的离心率为(  )
A、
2
B、
3
C、
6
2
D、2
考点:双曲线的简单性质
专题:计算题,直线与圆,圆锥曲线的定义、性质与方程
分析:先设F1F2=2c,由题意知△F1F2P是直角三角形,进而在RT△PF1F2中结合双曲线的定义和△PF1F2的面积,进而根据双曲线的简单性质求得a,c之间的关系,则双曲线的离心率可得.
解答: 解:双曲线
x2
16
-
y2
b2
=1的a2=16,
设F1F2=2c,由题意知△F1F2P是直角三角形,
∴F1P2+F2P2=F1F22
又根据曲线的定义得:
F1P-F2P=2a,
平方得:F1P2+F2P2-2F1P×F2P=4a2
 从而得出F1F22-2F1P×F2P=4a2
∴F1P×F2P=2(c2-a2
又当△PF1F2的面积等于16=a2
1
2
F1P×F2P=a2
2(c2-a2)=a2
∴c=
2
a,
∴双曲线的离心率e=
c
a
=
2

故选A.
点评:题主要考查了双曲线的简单性质.考查了学生综合分析问题和数形结合的思想的运用.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若log2x=3,log2y=4,则log2(xy)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

底面边长为2,高为1的正四棱锥的侧面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=|x+1|+|x-2|的最小值为m.
(Ⅰ)求m的值;
(Ⅱ)若a,b,c是正实数,且满足a+b+c=m,求证:a2+b2+c2≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,直线l过点P(-2,-4),倾斜角为
π
4
.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ=2acosθ(a>0).
(1)写出直线l的参数方程及曲线C的普通方程;
(2)若直线l与曲线C交于M,N两点,且|PM|•|PN|=40,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

“ALS冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动,若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.
(1)若某被邀请者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?
(2)假定(1)中被邀请到的3个人中恰有两个接受挑战,根据活动规定,现记X为接下来被邀请到的6个人中接受挑战的人数,求X的分布列和均值(数学期望).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+cx+d(a≠0)是R上的奇函数,当x=-1时,f(x)取得极值2,若对于任意x1,x2∈[-1,1],不等式|f(x1)-f(x2)|≤m恒成立,则实数m的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

整点是指在平面上横、纵坐标均为整数的点,求以(3,17)、(48,281)为端点的线段上的整点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(x-
π
3
)cosx+sinxcosx+
3
sin2x
(x∈R).
(1)求f(x)的单调递增区间;
(2)在△ABC中,B为锐角,且f(B)=
3
,AC=4
3
,D是BC边上一点,AB=AD,试求△ADC周长的最大值.

查看答案和解析>>

同步练习册答案