精英家教网 > 高中数学 > 题目详情
11.已知数列{an}满足:${a_1}=\frac{1}{7}$,对于任意的n∈N*,${a_{n+1}}=\frac{7}{2}{a_n}(1-{a_n})$,则a999-a888=(  )
A.$-\frac{2}{7}$B.$\frac{2}{7}$C.$-\frac{3}{7}$D.$\frac{3}{7}$

分析 通过计算出前几项的值可知当n为大于1的奇数时an=$\frac{6}{7}$、当n为大于1的偶数时an=$\frac{3}{7}$,进而计算可得结论.

解答 解:∵${a_1}=\frac{1}{7}$,${a_{n+1}}=\frac{7}{2}{a_n}(1-{a_n})$,
∴a2=$\frac{7}{2}$a1(1-a1)=$\frac{7}{2}$•$\frac{1}{7}$(1-$\frac{1}{7}$)=$\frac{3}{7}$,
a3=$\frac{7}{2}$a2(1-a2)=$\frac{7}{2}$•$\frac{3}{7}$(1-$\frac{3}{7}$)=$\frac{6}{7}$,
a4=$\frac{7}{2}$a3(1-a3)=$\frac{7}{2}$•$\frac{6}{7}$(1-$\frac{6}{7}$)=$\frac{3}{7}$,
∴当n为大于1的奇数时,an=$\frac{6}{7}$,
当n为大于1的偶数时,an=$\frac{3}{7}$,
∴a999-a888=$\frac{6}{7}$-$\frac{3}{7}$=$\frac{3}{7}$,
故选:D.

点评 本题考查数列的通项,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.求函数$f(x)=\sqrt{{x^2}-2x+2}+\sqrt{{x^2}-4x+8}$的最小值为$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知角α的终边上一点P(-3,4),则cosα的值为(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$-\frac{4}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者.从符合条件的500名志愿者中随机抽取100名志愿者,其年龄频率分布直方图如图所示,其中年龄分组区间是:[20,25),[25,30),[30,35),[35,40),[40,45].
(Ⅰ)求图中x的值并根据频率分布直方图估计这500名志愿者中年龄在[35,40)岁的人数;
(Ⅱ)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加中心广场的宣传活动,再从这20名中采用简单随机抽样方法选取3名志愿者担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,若f(x)=log3x,g(x)=log2x,输入x=0.25,则输出h(x)=(  )
A.0.25B.$\frac{1}{2}$log322C.-21log32D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某企业生产甲乙两种产品均需用A,B两种原料,已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为(  )
原料限额
A(吨)3212
B(吨)228
A.12万元B.16万元C.17万元D.18万元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知二次函数y=6x-2x2-m的值恒小于零,那么实数m的取值范围为(  )
A.m=$\frac{9}{2}$B.m>$\frac{9}{2}$C.m=9D.m<9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知等差数列{an}中,a3=2,3a2+2a7=0,其前n项和为Sn
(Ⅰ)求等差数列{an}的通项公式;
(Ⅱ)求Sn,试问n为何值时Sn最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知{an}为等差数列,Sn为{an}的前n项和,且a1+a3=8,S5=30.
(1)求{an}的通项公式;
(2)若a1,ak,Sk+2成等比数列,求正整数k的值.

查看答案和解析>>

同步练习册答案