精英家教网 > 高中数学 > 题目详情
6.如图,若f(x)=log3x,g(x)=log2x,输入x=0.25,则输出h(x)=(  )
A.0.25B.$\frac{1}{2}$log322C.-21log32D.-2

分析 模拟程序框图的运行过程,即可得出程序运行后输出的结果.

解答 解:模拟程序框图的运行过程,得;
输入x=0.25,
f(x)=log30.25=-2log32>g(x)=log20.25=-log24=-2,
h(x)=g(x)=-2,
输出h(x)=-2.
故选:D.

点评 本题考查了程序框图的应用问题,也考查了对数值的大小比较问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=cos(2x-$\frac{2π}{3}$)-cos2x(x∈R).
(1)求函数f(x)的最小正周期及单调递增区间;
(2)△ABC内角A、B、C的对边长分别为a、b、c,若f($\frac{B}{2}$)=-$\frac{\sqrt{3}}{2}$,b=1,c=$\sqrt{3}$,且a>b,求角B和角C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若非零实数a,b满足a>b,则(  )
A.$\frac{1}{a}<\frac{1}{b}$B.$\frac{1}{a^2}>\frac{1}{b^2}$C.a2>b2D.2a>2b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.f(x)=sinx+tanx+2,x∈[-$\frac{π}{4}$,$\frac{π}{4}$],f(x)最大值为M,最小值为m,M+m为(  )
A.4B.-4C.2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线y=a与y=tanx的图象的相邻两个交点的距离是(  )
A.$\frac{π}{2}$B.π
C.D.与a的值的大小有关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知数列{an}满足:${a_1}=\frac{1}{7}$,对于任意的n∈N*,${a_{n+1}}=\frac{7}{2}{a_n}(1-{a_n})$,则a999-a888=(  )
A.$-\frac{2}{7}$B.$\frac{2}{7}$C.$-\frac{3}{7}$D.$\frac{3}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.△ABC中,若$\overrightarrow{AD}$=3$\overrightarrow{DB}$,$\overrightarrow{CD}$=m$\overrightarrow{CA}$+n$\overrightarrow{CB}$,则m-n=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若直线过点M(1,2),N(4,2+$\sqrt{3}$),则此直线的倾斜角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.抛物线y2=2px(p>0)的焦点为F,点A,B在此抛物线上,且∠AFB=90°,弦AB的中点M在该抛物线准线上的射影为M′,则$\frac{|MM′|}{|AB|}$的最大值为(  )
A.$\sqrt{3}$B.$\frac{{\sqrt{3}}}{2}$C.1D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

同步练习册答案