精英家教网 > 高中数学 > 题目详情
17.若非零实数a,b满足a>b,则(  )
A.$\frac{1}{a}<\frac{1}{b}$B.$\frac{1}{a^2}>\frac{1}{b^2}$C.a2>b2D.2a>2b

分析 A.取a=2,b=-1,即可判断出正误;
B.取a=2,b=-1,即可判断出正误;
C.取a=1,b=-2,即可判断出正误;
D.利用函数f(x)=2x在R上单调递增,即可判断出.

解答 解:A.取a=2,b=-1,则$\frac{1}{a}<\frac{1}{b}$不成立;
B.取a=2,b=-1,则$\frac{1}{{a}^{2}}>\frac{1}{{b}^{2}}$不成立;
C.取a=1,b=-2,则a2>b2不成立;
D.∵函数f(x)=2x在R上单调递增,又a>b,∴2a>2b,正确.
故选:D.

点评 本题考查了不等式的基本性质、函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.有一粒质地均匀的正方体骰子,6个表面点数分别为1、2、3、4、5、6,甲、乙两人各掷一次,所得点数分别为ξ1,ξ2,记η=ξ12
(1)求η>0的概率;
(2)求η>2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的长轴长是短轴长的两倍,且过点C(2,1),点C关于原点O的对称点为点D.
(Ⅰ)求椭圆E的方程;
(Ⅱ)平行于CD的直线l交椭圆E于M,N两点,求△CMN面积的最大值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=$\frac{1}{x}$+$\frac{lnx}{x}$的单调增区间为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知MOD函数是一个求余函数,其格式为MOD(n,m),其结果为n除以m的余数,例如MOD(8,3)=2.如图是一个算法的程序框图,当输入的值为36时,则输出的结果为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知角α的终边上一点P(-3,4),则cosα的值为(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$-\frac{4}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数g(x)=x-$\sqrt{3x+1},h(x)=\frac{1}{2x}+\sqrt{3x+1}$,那么函数f(x)=g(x)+h(x)的解析式是f(x)=x+$\frac{1}{2x}$,(x≥-$\frac{1}{3}$,且x≠0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,若f(x)=log3x,g(x)=log2x,输入x=0.25,则输出h(x)=(  )
A.0.25B.$\frac{1}{2}$log322C.-21log32D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.化简求值:
(1)tan70°cos10°($\sqrt{3}$tan20°-1)
(2)已知cos($\frac{π}{4}$+x)=$\frac{3}{5}$,$\frac{17π}{12}$<x<$\frac{7π}{4}$,求$\frac{sin2x+2si{n}^{2}x}{1-tanx}$的值.

查看答案和解析>>

同步练习册答案