精英家教网 > 高中数学 > 题目详情
求圆C1:x2+y2-2x=0和圆C2:x2+y2+4y=0的圆心距|C1C2|,并确定圆C1和圆C2的位置关系.
考点:圆与圆的位置关系及其判定
专题:计算题,直线与圆
分析:由两圆的方程找出两圆心坐标与各自的半径,利用圆心距求出距离,判断圆心距与半径和与差的关系,即可判断出两圆的位置关系.
解答: (本题满分10分)
解:∵圆C1:x2+y2-2x=0化为(x-1)2+y2=1,圆C2:x2+y2+4y=0化为x2+(y+2)2=4,
∴圆C1,C2的圆心坐标,半径长分别为C1(1,0),r1=1;C2(0,-2),r2=2.
|C1C2|=
(1-0)2+(0+2)2
=
5

1-1<|C1C2|=
5
<2+1
圆圆C1,C2的位置关系是外切.
点评:本题考查了圆与圆的位置关系及其判定,两圆半径为R,r,圆心距为d,当d<R-r时,两圆内含;当d=R-r时,两圆内切;当R-r<d<R+r时,两圆相交;当d=R+r时,两圆外切;当d>R+r时,两圆外离.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知i是虚数单位,则复数
1+2i
2-i
=(  )
A、i
B、-i
C、5i
D、
4
5
+i

查看答案和解析>>

科目:高中数学 来源: 题型:

由“半径为R的圆内接矩形中,正方形的面积最大”,推理出“半径为R的球的内接长方体中,正方体的体积最大”是(  )
A、归纳推理B、类比推理
C、演绎推理D、以上都不是

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cos(π+x)=
4
5
,且
π
2
<x<π,求sin(3π+x)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a+
2x
2x+1
(a∈R)
是定义在R上的奇函数.
(1)求实数a的值;
(2)解关于x的不等式f(x2-tx)>f(2x-2t)(其中t∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y,a都是实数,且x+y=2a-1,x2+y2=a2+2a-3,求乘积xy的最小值及相应的a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+x
+
1-x

(1)求函数f(x)的定义域并判断函数的奇偶性;
(2)设F(x)=m
1-x2
+f(x)
,若记f(x)=t,求函数F(x)的最大值的表达式g(m);
(3)在(2)的条件下,求满足不等式g(-m)>(
9
4
)m
的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知半径为2,圆心在直线y=-x+2上的圆C.
(Ⅰ)当圆C经过点A(2,2)且与y轴相切时,求圆C的方程;
(Ⅱ)已知E(1,1),F(1,-3),若圆C上存在点Q,使|QF|2-|QE|2=32,求圆心的横坐标a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,1),
b
=(2,-3),若k
a
-2
b
a
垂直,求实数k的值.

查看答案和解析>>

同步练习册答案