精英家教网 > 高中数学 > 题目详情
由“半径为R的圆内接矩形中,正方形的面积最大”,推理出“半径为R的球的内接长方体中,正方体的体积最大”是(  )
A、归纳推理B、类比推理
C、演绎推理D、以上都不是
考点:演绎推理的基本方法
专题:规律型,推理和证明
分析:根据平面与空间之间的类比推理,由点类比点或直线,由直线类比直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,可得结论.
解答: 解:根据平面与空间之间的类比推理方法,可知由“半径为R的圆内接矩形中,正方形的面积最大”,推理出“半径为R的球的内接长方体中,正方体的体积最大”是类比推理.
故选B.
点评:类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9(x<y)已知这组数据的平均数为10,标准差为
2
,则y-x的值为(  )
(参考公式:标准差s=
1
n
[(x1-
.
x
)
2
+(x2-
.
x
)
2
+…+(xn-
.
x
)
2
]
A、4B、3C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

“m=3”是“直线l1:2(m+1)x+(m-3)y+7-5m=0与直线l2:(m-3)x+2y-5=0垂直”的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

由389化为的四进制数的末位为(  )
A、3B、2C、1D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

过点(1,-2)的直线与圆x2+y2-6x+2y+1=0交于A、B两点,则|AB|的最小值是(  )
A、5
B、2
5
C、4
D、2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中真命题的个数是(  )
①若A,B,C,D是空间任意四点,则有
AB
+
BC
+
CD
+
DA
=
0

②在四面体ABCD中,若
AB
CD
=0,
AC
BD
=0
,则
AD
BC
=0

③在四面体ABCD中点,且满足
AB
AC
=0,
AC
AD
=0
AB
AD
=0
.则△BDC是锐角三角形
④对空间任意点O与不共线的三点A,B,C,若
OP
=x
OA
+y
OA
+z
OC
(其中x,y,z∈R且x+y+z=1),则P,A,B,C四点共面.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(
x2+1
-x)
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性;
(3)判断函数f(x)的单调性;
(4)解不等式f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

求圆C1:x2+y2-2x=0和圆C2:x2+y2+4y=0的圆心距|C1C2|,并确定圆C1和圆C2的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公比0<q<1的等比数列{an}满足a8+a2=
28
3
,log3a3+log3a7=1.
(1)求数列{an}的通项公式;
(2)设bn=na2n,求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案