【题目】已知某山区小学有
名四年级学生,将全体四年级学生随机按
编号,并且按编号顺序平均分成
组.现要从中抽取
名学生,各组内抽取的编号按依次增加
进行系统抽样.
![]()
(1)若抽出的一个号码为
,据此写出所有被抽出学生的号码;
(2)分别统计这
名学生的数学成绩,获得成绩数据的茎叶图如图所示,求该样本的方差.
(注:
,方差
)
科目:高中数学 来源: 题型:
【题目】在极坐标系下,方程
的图形为如图所示的“幸运四叶草”,又称为玫瑰线.
![]()
(1)当玫瑰线的
时,求以极点为圆心的单位圆与玫瑰线的交点的极坐标;
(2)求曲线
上的点M与玫瑰线上的点N距离的最小值及取得最小值时的点M、N的极坐标(不必写详细解题过程).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知二次函数
(
、
、
均为实常数,
)的最小值是0,函数
的零点是
和
,函数
满足
,其中
,为常数.
(1)已知实数
、
满足、
,且
,试比较
与
的大小关系,并说明理由;
(2)求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,二面角
中,
,射线
,
分别在平面
,
内,点A在平面
内的射影恰好是点B,设二面角
、
与平面
所成角、
与平面
所成角的大小分别为
,则( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知曲线
:
(
为参数)和定点
,
是曲线
的左、右焦点,以原点
为极点,以
轴的非负半轴为极轴且取相同单位长度建立极坐标系.
(1)求直线
的极坐标方程;
(2)经过点
且与直线
垂直的直线
交曲线
于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱长均相等的四棱锥
中,
为底面正方形的中心,
,
分别为侧棱
,
的中点,有下列结论正确的有:( )
![]()
A.
∥平面
B.平面
∥平面![]()
C.直线
与直线
所成角的大小为
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据
(
=1,2,…,6),如表所示:
试销单价 | 4 | 5 | 6 | 7 | 8 | 9 |
产品销量 | q | 84 | 83 | 80 | 75 | 68 |
已知
.
(Ⅰ)求出
的值;
(Ⅱ)已知变量
具有线性相关关系,求产品销量
(件)关于试销单价
(元)的线性回归方程
;
(参考公式:线性回归方程中
,
的最小二乘估计分别为
,
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com