精英家教网 > 高中数学 > 题目详情
19.已知关于x的方程x2-(5+i)x+4+ai=0(a∈R)有实数根b,则|a+bi|等于(  )
A.$\sqrt{2}$B.4$\sqrt{2}$C.$\sqrt{2}$或4$\sqrt{2}$D.5

分析 由b2-(5+i)b+4+ai=0可得b2-5b+4=0,a-b=0,从而解得.

解答 解:∵关于x的方程x2-(5+i)x+4+ai=0(a∈R)有实数根b,
∴b2-(5+i)b+4+ai=0,
∴b2-5b+4+(a-b)i=0,
∴b2-5b+4=0且a-b=0,
解得,a=b=1或a=b=4,
故|a+bi|=$\sqrt{2}$或4$\sqrt{2}$,
故选:C.

点评 本题考查了复数相等的应用及复数的模的定义的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,在△ABC中,角A,B,C所对的边分别为a,b,c,已知A=60°,a=3.求△ABC的周长L的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知sinα-cosα=-$\frac{3\sqrt{2}}{5}$,$\frac{17π}{12}$<α$<\frac{7π}{4}$
(1)求sinαcosα、sinα+cosα的值;
(2)求sin(2α+$\frac{π}{4}$)的值;
(3)求$\frac{sin2α+2si{n}^{2}α}{1-tanα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知cosβ=-$\frac{2}{3}$,(0<β<π),求:sin$\frac{β}{2}$,cos$\frac{β}{2}$,tan$\frac{β}{2}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数y=2a+bsinx的最大值为3,最小值为1,则函数y最小正周期为2π,值域为[1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n=a0+a1x+a2x2+a3x3+…+anxn(n∈Z),若a2:a3=1:2.
(1)求n的值;
(2)求a0+a1+a2+a3+…+an的值;
(3)求a0-2a1+4a2-8a3+…+(-2)nan的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的奇数项是首项为1的等差数列.偶数项是首项为2的等比数列,设数列{an}的前n项和为Sn,且满足a4=S3.a9=a3+a4
(1)求数列{an}的通项公式
(2)若akak+1=ak+2,求正整数k的值:
(3)是否存在正整数k.使得$\frac{{S}_{2k}}{{S}_{2k-1}}$恰好为数列{an}的奇数项?若存在,求出所有满足条件的正整数k:若不存在.请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过两直线x-$\sqrt{3}y$+1=0和$\sqrt{3}x$+y-$\sqrt{3}$=0的交点,并与原点的距离等于1的直线有(  )
A.0条B.1条C.2条D.3条

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数y=loga(x-3)+2(a>0,a≠1)的图象过定点A,若点A也在幂函数f(x)的图象上,则f(2)=$\sqrt{2}$.

查看答案和解析>>

同步练习册答案