精英家教网 > 高中数学 > 题目详情
8.过两直线x-$\sqrt{3}y$+1=0和$\sqrt{3}x$+y-$\sqrt{3}$=0的交点,并与原点的距离等于1的直线有(  )
A.0条B.1条C.2条D.3条

分析 解方程组可得直线交点,由点到直线的距离公式可得满足题意的直线斜率,验证无斜率直线,综合可得.

解答 解:联立x-$\sqrt{3}y$+1=0和$\sqrt{3}x$+y-$\sqrt{3}$=0可解得x=$\frac{1}{2}$且y=$\frac{\sqrt{3}}{2}$,
∴直线x-$\sqrt{3}y$+1=0和$\sqrt{3}x$+y-$\sqrt{3}$=0的交点为($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),
当直线无斜率时,方程为x=$\frac{1}{2}$,到原点的距离等于$\frac{1}{2}$,不合题意;
当直线斜率存在时设方程为y-$\frac{\sqrt{3}}{2}$=k(x-$\frac{1}{2}$),即2kx-2y+$\sqrt{3}$-k=0,
由题意和点到直线的距离公式可得$\frac{|\sqrt{3}-k|}{\sqrt{4{k}^{2}+4}}$=1,解得k=-$\frac{\sqrt{3}}{3}$,
故满足题意的直线共有1条.
故选:B.

点评 本题考查点到直线的距离公式和直线的交点坐标,涉及分类讨论思想,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知a1+2a2+3a3+…+nan=$\frac{1}{4}$[(2n-1)an+1+1],a1=1,则an=3n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知关于x的方程x2-(5+i)x+4+ai=0(a∈R)有实数根b,则|a+bi|等于(  )
A.$\sqrt{2}$B.4$\sqrt{2}$C.$\sqrt{2}$或4$\sqrt{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.化简下列各式:
(1)$\frac{cosα-sinα}{1-tanα}$;(2)$\frac{2co{s}^{2}α-1}{1-2si{n}^{2}α}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.函数y=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在同一个周期内,当x=$\frac{π}{4}$时y取最大值1,当x=$\frac{7π}{12}$时y取最小值-1.
(1)求函数的解析式y=f(x);
(2)当x∈[$\frac{5π}{36}$,$\frac{19π}{36}$]时.求函数y=f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将函数y=sin(x-$\frac{π}{6}$)的图象上所有点的横坐标缩短到原来的 $\frac{1}{2}$倍(纵坐标不变),再将所得函数的图象向左平移$\frac{π}{6}$个单位,最后所得到的图象对应的解析式是(  )
A.y=sin$\frac{1}{2}$xB.y=sin($\frac{1}{2}$x-$\frac{π}{6}$)C.y=sin2xD.y=sin(2x+$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若直线(3-a)x+(2a-1)y+7=0与直线(2a+1)x+(a+5)y-6=0互相垂直,则a的值为$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若向量$\overrightarrow a=(cosθ{,_{\;}}sinθ)$,$\overrightarrow b=(\sqrt{3}{,_{\;}}-1)$.
(1)若$\overrightarrow a⊥\overrightarrow{b,}$且$θ∈(0,\frac{π}{2})$,求θ的值;
(2)若θ∈[0,π],求$|2\overrightarrow a-\overrightarrow b|$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若关于x的不等式(2x-1)2<ax2的解集中整数解恰有3个,则实数a的取值范围是($\frac{25}{9}$,$\frac{49}{16}$].

查看答案和解析>>

同步练习册答案