分析 (1)函数的半周期为$\frac{7π}{12}-\frac{π}{4}$,代入周期公式求出ω,利用特殊值解出φ,得出f(x)的解析式;
(2)根据x的范围得出3x-$\frac{π}{4}$的范围,利用正弦函数的单调性得出f(x)的值域.
解答 解:(1)由题意可知f(x)的周期T=2($\frac{7π}{12}-\frac{π}{4}$)=$\frac{2π}{3}$.
∴ω=$\frac{2π}{T}$=3.
∵f($\frac{π}{4}$)=1,∴sin($\frac{3π}{4}+$φ)=1,
∴$\frac{3π}{4}+$φ=$\frac{π}{2}+2kπ$,φ=-$\frac{π}{4}+2kπ$,k∈Z.
∵|φ|<$\frac{π}{2}$,∴当k=0时,φ=-$\frac{π}{4}$.
∴f(x)=sin(3x-$\frac{π}{4}$).
(2)当x∈[$\frac{5π}{36}$,$\frac{19π}{36}$]时,3x-$\frac{π}{4}$∈[$\frac{π}{6}$,$\frac{4π}{3}$],
∴当3x-$\frac{π}{4}$=$\frac{π}{2}$时,f(x)取得最大值1,
当3x-$\frac{π}{4}$=$\frac{4π}{3}$时,f(x)取得最小值-$\frac{\sqrt{3}}{2}$.
∴函数y=f(x)的值域是[-$\frac{\sqrt{3}}{2}$,1].
点评 本题考查了正弦函数的图象与性质,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{π}{4}$) | B. | (0,$\frac{π}{4}$] | C. | (0,$\frac{π}{3}$) | D. | (0,$\frac{π}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0条 | B. | 1条 | C. | 2条 | D. | 3条 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com