| A. | (0,$\frac{π}{4}$) | B. | (0,$\frac{π}{4}$] | C. | (0,$\frac{π}{3}$) | D. | (0,$\frac{π}{3}$] |
分析 当x≤0时,函数f(x)是双曲线得到渐近线的斜率k=-3,当x>0时,求函数过原点的切线,根据直线的夹角公式进行求解即可.
解答
解:当x≤0时,由y=$\sqrt{1+9{x}^{2}}$得y2-9x2=1,(x≤0),此时对应的曲线为双曲线,双曲线的渐近线为y=-3x,此时渐近线的斜率k1=-3,
当x>0时,f(x)=1+xex-1,当过原点的直线和f(x)相切时,设切点为(a,1+aea-1),
函数的导数f′(x)=ex-1+xex-1=(x+1)ex-1,
则切线斜率k2=f′(a)=(a+1)ea-1,
则对应的切线方程为y-(1+aea-1)=(1+a)ea-1(x-a),
即y=(1+a)ea-1(x-a)+1+aea-1,
当x=0,y=0时,(1+a)ea-1(-a)+1+aea-1=0,
即a2ea-1+aea-1=1+aea-1,
即a2ea-1=1,得a=1,此时切线斜率k2=2,
则切线和y=-3x的夹角为θ,
则tanθ=|$\frac{-3-2}{1-2×3}$|=$\frac{5}{5}=1$,则θ=$\frac{π}{4}$,
故∠AOB(O为坐标原点)的取值范围是(0,$\frac{π}{4}$),
故选:A.
点评 本题主要考查直线夹角的求解,根据双曲线的渐近线和导数的几何意义求出切线斜率是解决本题的关键.综合性较强,有一定的难度.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{11}$ | B. | $\frac{3}{7}$ | C. | $\frac{8}{9}$ | D. | $\frac{4}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | -$\frac{1}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com