分析 化简可得(n+1)an+1=$\frac{1}{4}$[(2n+1)an+2+1]-$\frac{1}{4}$[(2n-1)an+1+1],从而可判断数列{an}是以1为首项,3为公比的等比数列,从而解得.
解答 解:∵a1+2a2+3a3+…+nan=$\frac{1}{4}$[(2n-1)an+1+1],
a1+2a2+3a3+…+nan+(n+1)an+1=$\frac{1}{4}$[(2n+1)an+2+1],
两式作差可得,
(n+1)an+1=$\frac{1}{4}$[(2n+1)an+2+1]-$\frac{1}{4}$[(2n-1)an+1+1],
化简可得,an+2=3an+1,
当n=1时,a1=$\frac{1}{4}$(a2+1),解得,a2=3;
故数列{an}是以1为首项,3为公比的等比数列,
故an=1•3n-1=3n-1,
故答案为:3n-1.
点评 本题考查了数学归纳法的应用及分类讨论的思想应用,同时考查了等比数列的性质应用.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{{\sqrt{3}}}{2}$ | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{π}{4}$) | B. | (0,$\frac{π}{4}$] | C. | (0,$\frac{π}{3}$) | D. | (0,$\frac{π}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0条 | B. | 1条 | C. | 2条 | D. | 3条 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com