分析 由题意,原不等式转化为[($\sqrt{a}$+2)x-1][($\sqrt{a}$-2)x+1]>0,得到a的解集,由解集中的整数恰有3个,且为1,2,3,得到a的不等式,解不等式可得a的范围.
解答 解:由题知,a>0 则
(2x-1)2<ax2即为ax2-(2x-1)2>0.
即($\sqrt{a}$x+2x-1)($\sqrt{a}$x-2x+1)>0,
即[($\sqrt{a}$+2)x-1][($\sqrt{a}$-2)x+1]>0,
由于$\sqrt{a}$+2>0,而不等式的解答中恰有3个整数解,
故必有$\sqrt{a}$-2<0,即必有a<4,
所以不等式可变为[($\sqrt{a}$+2)x-1][(2-$\sqrt{a}$)x-1]<0,
解得$\frac{1}{\sqrt{a}+2}$<x<$\frac{1}{2-\sqrt{a}}$,
又0<$\frac{1}{\sqrt{a}+2}$<1,结合解集中恰有两个整数,即为1,2,3
可得3<$\frac{1}{2-\sqrt{a}}$≤4,
解得$\frac{25}{9}$<a≤$\frac{49}{16}$.
所以a的取值范围为($\frac{25}{9}$,$\frac{49}{16}$].
故答案为:($\frac{25}{9}$,$\frac{49}{16}$].
点评 本题考查学生解含参一元二次不等式的能力,运用一元二次不等式解决数学问题的能力.
科目:高中数学 来源: 题型:选择题
| A. | 0条 | B. | 1条 | C. | 2条 | D. | 3条 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a=1,b=2 | B. | a=2,b=1 | C. | a=-1,b=2 | D. | a=2,b=-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com