精英家教网 > 高中数学 > 题目详情
1.已知直线Ax+By+C=0(A2+B2=C2)与圆x2+y2=4交于M,N两点,O为坐标原点,则|MN|等于$2\sqrt{3}$,$\overrightarrow{OM}$•$\overrightarrow{ON}$等于-2.

分析 由题意,利用点到直线的距离公式求出圆心到直线的距离,由弦心距、圆的半径及弦长的关系求得弦长;再解三角形求出∠MON,利用数量积公式即可求出$\overrightarrow{OM}$•$\overrightarrow{ON}$.

解答 解:如图,圆心到直线的距离是d=$\frac{|C|}{\sqrt{{A}^{2}+{B}^{2}}}$,
又A2+B2=C2
∴d=$\frac{|C|}{\sqrt{{A}^{2}+{B}^{2}}}$=1.
又圆的半径是2,
∴|MN|=2$\sqrt{{2}^{2}-{1}^{2}}=2\sqrt{3}$;
sin∠OMN=sin∠ONM=$\frac{1}{2}$.
∴∠OMN=∠ONM=30°,可得∠MON=120°.
故$\overrightarrow{OM}$•$\overrightarrow{ON}$=2×2×cos120°=-2.
故答案为:$2\sqrt{3}$,-2.

点评 本题考查数量积的公式,考查直线与圆相交的性质,点到直线的距离公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.化简下列各式:
(1)$\frac{cosα-sinα}{1-tanα}$;(2)$\frac{2co{s}^{2}α-1}{1-2si{n}^{2}α}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若向量$\overrightarrow a=(cosθ{,_{\;}}sinθ)$,$\overrightarrow b=(\sqrt{3}{,_{\;}}-1)$.
(1)若$\overrightarrow a⊥\overrightarrow{b,}$且$θ∈(0,\frac{π}{2})$,求θ的值;
(2)若θ∈[0,π],求$|2\overrightarrow a-\overrightarrow b|$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知到定点M(a,0)与N(2,0)的斜率之积为$\frac{1}{2}$的点的轨迹方程为x2-2y2=4(x≠±2),则实数a的值(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若10-2x=25,则10x的值为(  )
A.$±\frac{1}{5}$B.$\frac{1}{5}$C.$-\frac{1}{5}$D.$\frac{1}{625}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x>0}\\{x+1,x≤0}\end{array}\right.$,$f({{{log}_2}\frac{1}{3}})的值等于$$lo{g}_{2}\frac{2}{3}$,若f(a)+f(1)=0,则实数a的值等于-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若关于x的不等式(2x-1)2<ax2的解集中整数解恰有3个,则实数a的取值范围是($\frac{25}{9}$,$\frac{49}{16}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.x∈R时,如果函数f(x)>g(x)恒成立,那么称函数f(x)是函数g(x)的“优越函数”.若函数f(x)=2x2+x+2-|2x+1|是函数g(x)=|x-m|的“优越函数”,则实数m的取值范围是$-\frac{1}{2}<m<1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设数列{an}的前n项之积为Tn,且log2Tn=$\frac{n(n-1)}{2}$,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=λan-1(n∈N*),数列{bn}的前n项和为Sn,若对任意的n∈N*,总有Sn+1>Sn,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案