精英家教网 > 高中数学 > 题目详情
3.某空间几何体的三视图如图所示,则该空间几何体的表面积为4π+4.

分析 由已知中的三视图可得该几何体是一个球和半圆柱的组合体,求出各个面的面积,相加可得答案.

解答 解:由已知中的三视图可得该几何体是一个球和半圆柱的组合体,
半圆柱的底面直径为2,半径为1,高为2,
故表面积为:π+(π+2)×2=3π+4,
球的直径为1,故表面积为:π,
故组合体的表面积为:4π+4,
故答案为:4π+4.

点评 本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,若F2关于渐近线的对称点为M,且|MF1|=$\sqrt{2}$c,则该双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知AB是单位圆上的动点,且|AB|=$\sqrt{3}$、单位圆的圆心为O,则$\overrightarrow{OA}•\overrightarrow{OB}$=(  )
A.-$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知m,n表示不同的直线,α,β表示不同的平面,则下列命题正确的个数是(  )
①若m⊥α,n⊥α,则m∥n;
②若m⊥n,n⊥α,则m∥α;
③若m⊥β,α⊥β,则m∥α;
④若m⊥α,m⊥β,则α∥β.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知x∈R时,不等式x2-4mx+2m+30≥0恒成立,求实数m允许取值的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.计算:$\sqrt{(π-4)^{2}}$=4-π.lg$\frac{1}{100}$+ln$\sqrt{e}$=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.以下四个命题中,正确的个数是(  )
①命题“若f(x)是周期函数,则f(x)是三角函数”的否命题是“若f(x)是周期函数,
则f(x)不是三角函数”
②命题“存在x∈R,x2-x>0”的否定是“对于任意x∈R,x2-x>0”;
③在△ABC中,“sinA>sinB”是“A>B”成立的充要条件.
④若函数f(x)在(2015,2017)上有零点,则一定有f(2015)•f(2017)<0.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合P={x|x2+2x-8≤0},$Q=\{y|y={(\frac{1}{3})^x},x∈(-2,1)\}$,则P∩Q=(  )
A.$(-4,\frac{1}{9})$B.$(\frac{1}{9},2]$C.$(\frac{1}{3},2]$D.$(\frac{1}{3},2)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)在区间[2,4]上是增函数,且f(2)=-1,f(4)=1,则f(3)=0,f(x)的一个单调递减区间是[0,2](写出一个即可)

查看答案和解析>>

同步练习册答案