精英家教网 > 高中数学 > 题目详情
12.设集合P={x|x2+2x-8≤0},$Q=\{y|y={(\frac{1}{3})^x},x∈(-2,1)\}$,则P∩Q=(  )
A.$(-4,\frac{1}{9})$B.$(\frac{1}{9},2]$C.$(\frac{1}{3},2]$D.$(\frac{1}{3},2)$

分析 求出P与Q中不等式的解集确定出P与Q,找出两集合的交集即可.

解答 解:P={x|x2+2x-8≤0}=[-4,2],
$Q=\{y|y={(\frac{1}{3})^x},x∈(-2,1)\}$=($\frac{1}{3}$,9),
则P∩Q=($\frac{1}{3}$,2],
故选:C.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.点G为△ABC的重心,设$\overrightarrow{BG}$=$\overrightarrow{a}$,$\overrightarrow{GC}$=$\overrightarrow{b}$,则$\overrightarrow{AB}$=(  )
A.$\frac{3}{2}$$\overrightarrow{a}$-$\frac{1}{2}\overrightarrow{b}$B.$\frac{3}{2}\overrightarrow{a}+\frac{1}{2}\overrightarrow{b}$C.$\overrightarrow{b}$-2$\overrightarrow{a}$D.2$\overrightarrow{a}+\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某空间几何体的三视图如图所示,则该空间几何体的表面积为4π+4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知tanα=2,α为第一象限角,则sin2α+cosα的值为(  )
A.$\sqrt{5}$B.$\frac{{4+2\sqrt{5}}}{5}$C.$\frac{{4+\sqrt{5}}}{5}$D.$\frac{{\sqrt{5}-2}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知tanα=2,α为第一象限角,则sin2α的值为(  )
A.$-\frac{3}{5}$B.$\frac{{4\sqrt{5}}}{5}$C.$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1)+1=(  )
A.x5B.(x-1)5-1C.x5+1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.计算:${log_5}25+lg\frac{1}{100}+ln\sqrt{e}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若直线x+my-1=0与不等式组$\left\{\begin{array}{l}{x+2y-4≤0}\\{x-y+2≤0}\\{x≥-1}\end{array}\right.$,表示的平面区域有公共点,则实数m的取值范围是(  )
A.[$\frac{1}{2}$,2]B.[$\frac{1}{3}$,3]C.(-∞,$\frac{1}{3}$]∪[3,+∞)D.(-∞,$\frac{1}{2}$]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,若在矩阵OABC中随机撒一粒豆子,则豆子落在图中阴影部分的概率为(  )
A.1-$\frac{2}{π}$B.$\frac{2}{π}$C.$\frac{2}{{π}^{2}}$D.1-$\frac{2}{{π}^{2}}$

查看答案和解析>>

同步练习册答案