精英家教网 > 高中数学 > 题目详情
20.已知tanα=2,α为第一象限角,则sin2α+cosα的值为(  )
A.$\sqrt{5}$B.$\frac{{4+2\sqrt{5}}}{5}$C.$\frac{{4+\sqrt{5}}}{5}$D.$\frac{{\sqrt{5}-2}}{5}$

分析 由条件利用同角三角函数的基本关系求得sinα和cosα的值,再利用二倍角公式求得sin2α的值,可得要求式子的值.

解答 解:由tanα=2=$\frac{sinα}{cosα}$,sin2α+cos2α=1,α为第一象限角,
可得$sinα=\frac{2}{{\sqrt{5}}}$,$cosα=\frac{1}{{\sqrt{5}}}$,所以$sin2α=2•\frac{2}{{\sqrt{5}}}•\frac{1}{{\sqrt{5}}}=\frac{4}{5}$,
∴sin2α+cosα=$\frac{4+\sqrt{5}}{5}$,
故选:C.

点评 本题主要考查同角三角函数的基本关系,二倍角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.如图,在矩形ABCD中,AB=8,BC=4,E为DC边的中点,沿AE将△ADE折起,在折起过程中,下列结论中能成立的序号为④.

①ED⊥平面ACD
②CD⊥平面BED
③BD⊥平面ACD
④AD⊥平面BED.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知m,n表示不同的直线,α,β表示不同的平面,则下列命题正确的个数是(  )
①若m⊥α,n⊥α,则m∥n;
②若m⊥n,n⊥α,则m∥α;
③若m⊥β,α⊥β,则m∥α;
④若m⊥α,m⊥β,则α∥β.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.计算:$\sqrt{(π-4)^{2}}$=4-π.lg$\frac{1}{100}$+ln$\sqrt{e}$=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.以下四个命题中,正确的个数是(  )
①命题“若f(x)是周期函数,则f(x)是三角函数”的否命题是“若f(x)是周期函数,
则f(x)不是三角函数”
②命题“存在x∈R,x2-x>0”的否定是“对于任意x∈R,x2-x>0”;
③在△ABC中,“sinA>sinB”是“A>B”成立的充要条件.
④若函数f(x)在(2015,2017)上有零点,则一定有f(2015)•f(2017)<0.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,角A、B、C所对的边分别为a、b、c,已知2c-a=$\frac{bcosA}{cosB}$,且b=4.则△ABC的周长的最大值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合P={x|x2+2x-8≤0},$Q=\{y|y={(\frac{1}{3})^x},x∈(-2,1)\}$,则P∩Q=(  )
A.$(-4,\frac{1}{9})$B.$(\frac{1}{9},2]$C.$(\frac{1}{3},2]$D.$(\frac{1}{3},2)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合A={x|x2+x-2<0},B={-1,0,3},则A∩B=(  )
A.{-1,0}B.{0,3}C.{-1,3}D.{-1,0,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=$\sqrt{3}$cos2x-sin2x的一个单调区间是(  )
A.[-$\frac{π}{6}$,$\frac{π}{6}$]B.[-$\frac{π}{6}$,$\frac{2π}{3}$]C.[$\frac{π}{12}$,$\frac{7π}{12}$]D.[-$\frac{π}{12}$,$\frac{5π}{12}$]

查看答案和解析>>

同步练习册答案