精英家教网 > 高中数学 > 题目详情
13.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,若F2关于渐近线的对称点为M,且|MF1|=$\sqrt{2}$c,则该双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2$\sqrt{3}$D.2

分析 取双曲线的渐近线y=$\frac{b}{a}$x,设点F2(c,0)关于此直线的对称点M的坐标为(m,n),利用轴对称的性质可得m,n用a,b,c表示,利用两点间的距离公式及|MF1|=$\sqrt{2}$c,以及离心率公式即可得出.

解答 解:取双曲线的渐近线y=$\frac{b}{a}$x,
设点F2(c,0)关于此直线的对称点M的坐标为(m,n),
即有$\left\{\begin{array}{l}{\frac{n}{m-c}•\frac{b}{a}=-1}\\{\frac{n}{2}=\frac{b}{a}•\frac{m+c}{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{m=\frac{2{a}^{2}}{c}-c}\\{n=\frac{2ab}{c}}\end{array}\right.$.即M($\frac{2{a}^{2}}{c}$-c,$\frac{2ab}{c}$).
有|MF1|=$\sqrt{2}$c,可得$\sqrt{(\frac{2{a}^{2}}{c}-c+c)^{2}+(\frac{2ab}{c})^{2}}$=$\sqrt{2}$c,
化为c=$\sqrt{2}$a.则e=$\frac{c}{a}$=$\sqrt{2}$.
故选:A.

点评 本题综合考查了双曲线的性质、两点间的距离公式、轴对称的性质等基础知识与基本方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.函数y=3sin(2x+$\frac{π}{6}$)的单凋递减区间是[$\frac{π}{6}$+kπ,$\frac{2π}{3}$+kπ],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,角A,B,C所对的边分别为a,b,c下列结论:
①若a2>b2+c2,则△ABC为钝角三角形;
②若a2=b2+c2+bc,则A为60°;
③若a2+b2>c2,则△ABC为锐角三角形;
④若A:B:C=1:2:3,则:a:b:c=1:$\sqrt{3}$:2.
其中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图甲,⊙O的直径AB=2,圆上两点C,D在直径AB的两侧,使∠CAB=$\frac{π}{4}$,∠DAB=$\frac{π}{3}$.沿直径AB折起,使两个半圆所在的平面互相垂直(如图乙),F为BC的中点,E为AO的中点.P为AC的动点,根据图乙解答下列各题:

(1)求三棱锥D-ABC的体积.
(2)求证:不论点P在何位置,都有DE⊥BP;
(3)在BD弧上是否存在一点G,使得FG∥平面ACD?若存在,试确定点G的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.未来制造业对零件的精度要求越来越高.3D打印通常是采用数字技术材料打印机来实现的,常在模具制造、工业设计等领域被用于制造模型,后逐渐用于一些产品的直接制造,已经有使用这种技术打印而成的零部件.该技术应用十分广泛,可以预计在未来会有广阔的发展空间.某制造企业向A高校3D打印实验团队租用一台3D打印设备,用于打印一批对内径有较高精度要求的零件.该团队在实验室打印出了一批这样的零件,从中随机抽取10件零件,度量其内径的茎叶图如如图所示(单位:μm).
(Ⅰ) 计算平均值μ与标准差σ;
(Ⅱ) 假设这台3D打印设备打印出品的零件内径Z服从正态分布N(μ,σ2),该团队到工厂安装调试后,试打了5个零件,度量其内径分别为(单位:μm):86、95、103、109、118,试问此打印设备是否需要进一步调试,为什么?
参考数据:P(μ-2σ<Z<μ+2σ)=0.9544,P(μ-3σ<Z<μ+3σ)=0.9974,0.95443=0.87,0.99744=0.99,0.04562=0.002.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知点M是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)左支上一点,F是其右焦点,P为线段MF的中点,若|OM|=|OF|(0为坐标原点)且|OP|=$\frac{1}{2}$a,则双曲线的离心率为(  )
A.$\frac{\sqrt{10}}{2}$B.$\sqrt{10}$C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知直线经过点P(2,0),且被圆(x-3)2+(y-2)2=4截得的弦长为2$\sqrt{3}$,则这条直线的方程为x=2和3x-4y-6=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.点G为△ABC的重心,设$\overrightarrow{BG}$=$\overrightarrow{a}$,$\overrightarrow{GC}$=$\overrightarrow{b}$,则$\overrightarrow{AB}$=(  )
A.$\frac{3}{2}$$\overrightarrow{a}$-$\frac{1}{2}\overrightarrow{b}$B.$\frac{3}{2}\overrightarrow{a}+\frac{1}{2}\overrightarrow{b}$C.$\overrightarrow{b}$-2$\overrightarrow{a}$D.2$\overrightarrow{a}+\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某空间几何体的三视图如图所示,则该空间几何体的表面积为4π+4.

查看答案和解析>>

同步练习册答案