已知点集L={(x,y)|y=m·n},其中m=(2x-2b,1),n=(1,1+2b),点列Pn(an,bn)在点集L中,P1为L的轨迹与y轴的交点,已知数列{an}为等差数列,且公差为1,n∈N*.
(1)求数列{an},{bn}的通项公式;
(2)求·OPn+1的最小值;
(3)设cn= (n≥2),求c2+c3+c4+…+cn的值.
(1)bn=2n-1(n∈N*).(2)3.(3)
【解析】(1)由y=m·n,
m=(2x-2b,1), n=(1,1+2b),得y=2x+1,
即L的轨迹方程为y=2x+1.
∵P1为L的轨迹与y轴的交点,
∴P1(0,1),则a1=0,b1=1,
∵数列{an}为等差数列,且公差为1,
∴an=n-1(n∈N*),
代入y=2x+1,得bn=2n-1(n∈N*).
(2)∵Pn(n-1,2n-1),∴Pn+1(n,2n+1),
∴·OPn+1=(n-1,2n-1)·(n,2n+1)
=5n2-n-1=52-.
∵n∈N*,
∴当n=1时,·OPn+1有最小值,为3.
(3)当n≥2时,由Pn(n-1,2n-1),
得an·|PnPn+1|= (n-1),
cn=,
∴c2+c3+…+cn=
科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)仿真模拟卷1练习卷(解析版) 题型:选择题
已知函数f(x)=若函数y=f(x)-2有3个零点,则实数a的值为( )
A.-4 B.-2 C.0 D.2
查看答案和解析>>
科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷5练习卷(解析版) 题型:选择题
过双曲线=1(a>0,b>0)的左焦点F(-c,0)(c>0)作圆x2+y2=的切线,交双曲线右支于点P,切点为E,若=(+),则双曲线的离心率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷4练习卷(解析版) 题型:填空题
如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于点O,剪去△AOB,将剩余部分沿OC,OD折叠,使OA,OB重合,则以A,B,C,D,O为顶点的四面体的体积为________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷4练习卷(解析版) 题型:选择题
设m,n是两条不同的直线,α,β,γ是三个不同的平面,有以下四个命题:
① ⇒β∥γ② ⇒m⊥β③⇒α⊥β④⇒m∥α
其中正确的命题是( )
A.①④ B.②③ C.①③ D.②④
查看答案和解析>>
科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷3练习卷(解析版) 题型:解答题
已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.
(1)求{an}的通项公式;
(2)求数列的前n项和.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷3练习卷(解析版) 题型:选择题
已知数列{an},{bn}满足a1=b1=3,an+1-an==3,n∈N*,若数列{cn}满足cn=ban,则c2 013=( )
A.92 012 B.272 012 C.92 013 D.272 013
查看答案和解析>>
科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷2练习卷(解析版) 题型:填空题
若函数f(x)=2sin (-2<x<10)的图象与x轴交于点A,过点A的直线l与函数的图象交于B、C两点,则(+)·=________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学(文)三轮专题体系通关训练解答题押题练C组练习卷(解析版) 题型:解答题
已知函数f(x)=x2-(1+2a)x+aln x(a为常数).
(1)当a=-1时,求曲线y=f(x)在x=1处切线的方程;
(2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com