已知函数f(x)=x2-(1+2a)x+aln x(a为常数).
(1)当a=-1时,求曲线y=f(x)在x=1处切线的方程;
(2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间.
(1)y=2x.(2)①当0<a<时,f(x)的单调增区间是(0,a)和,单调减区间是,②当a=时,f(x)在区间(0,1)上是单调增函数.③当<a<1时,f(x)的单调增区间是和(a,1),单调减区间是,④当a≥1时,f(x)的单调增区间是,单调减区间是
【解析】(1)当a=-1时,f(x)=x2+x-ln x,则f′(x)=2x+1-,(2分)
所以f(1)=2,且f′(1)=2.
所以曲线y=f(x)在x=1处的切线的方程为:y-2=2(x-1),
即:y=2x.(6分)
(2)由题意得f′(x)=2x-(1+2a)+= (x>0),
由f′(x)=0,得x1=,x2=a,(8分)
①当0<a<时,由f′(x)>0,又知x>0得0<x<a或<x<1
由f′(x)<0,又知x>0,得a<x<,
所以函数f(x)的单调增区间是(0,a)和,单调减区间是,(10分)
②当a=时,f′(x)=≥0,且仅当x=时,f′(x)=0,?
所以函数f(x)在区间(0,1)上是单调增函数.(11分)
③当<a<1时,由f′(x)>0,又知x>0得0<x<或a<x<1,
由f′(x)<0,又知x>0,得<x<a,
所以函数f(x)的单调增区间是和(a,1),单调减区间是,(13分)
④当a≥1时,由f′(x)>0,又知x>0得0<x<,
由f′(x)<0,又知x>0,得<x<1,
所以函数f(x)的单调增区间是,单调减区间是.(16分)
科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷3练习卷(解析版) 题型:解答题
已知点集L={(x,y)|y=m·n},其中m=(2x-2b,1),n=(1,1+2b),点列Pn(an,bn)在点集L中,P1为L的轨迹与y轴的交点,已知数列{an}为等差数列,且公差为1,n∈N*.
(1)求数列{an},{bn}的通项公式;
(2)求·OPn+1的最小值;
(3)设cn= (n≥2),求c2+c3+c4+…+cn的值.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷2练习卷(解析版) 题型:选择题
设复数z满足z·(1-i)=3-i,i为虚数单位,则z=( )
A.1+2i B.1-2i
C.2+i D.2-i
查看答案和解析>>
科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷1练习卷(解析版) 题型:选择题
关于x的不等式x2-2ax-8a2<0(a>0)的解集为(x1,x2),且x2-x1=15,则a=( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学(文)三轮专题体系通关训练解答题押题练D组练习卷(解析版) 题型:解答题
若两个椭圆的离心率相等,则称它们为“相似椭圆”.如图,在直角坐标系xOy中,已知椭圆C1:=1,A1,A2分别为椭圆C1的左、右顶点.椭圆C2以线段A1A2为短轴且与椭圆C1为“相似椭圆”.
(1)求椭圆C2的方程;
(2)设P为椭圆C2上异于A1,A2的任意一点,过P作PQ⊥x轴,垂足为Q,线段PQ交椭圆C1于点H.求证:H为△PA1A2的垂心.(垂心为三角形三条高的交点)
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学(文)三轮专题体系通关训练解答题押题练B组练习卷(解析版) 题型:解答题
已知数列{an}的前三项分别为a1=5,a2=6,a3=8,且数列{an}的前n项和Sn满足Sn+m=(S2n+S2m)-(n-m)2,其中m,n为任意正整数.
(1)求数列{an}的通项公式及前n项和Sn;
(2)求满足-an+33=k2的所有正整数k,n.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学(文)三轮专题体系通关训练解答题押题练A组练习卷(解析版) 题型:解答题
已知各项均为正数的数列{an}的前n项和为Sn,满足8Sn=a+4an+3(n∈N*),且a1,a2,a7依次是等比数列{bn}的前三项.
(1)求数列{an}及{bn}的通项公式;
(2)是否存在常数a>0且a≠1,使得数列{an-logabn}(n∈N*)是常数列?若存在,求出a的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学(文)三轮专题体系通关训练填空题押题练F组练习卷(解析版) 题型:填空题
已知复数z满足(z-2)i=1+i(i为虚数单位),则z的模为________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学(文)三轮专题体系通关训练填空题押题练C组练习卷(解析版) 题型:填空题
已知等比数列{an}的公比为正数,且a3·a9=2,a2=1,则a1=________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com