【题目】在底面是正方形的四棱锥中, , ,点在上,且.
(Ⅰ)求证: 平面;
(Ⅱ)求二面角的余弦值.
科目:高中数学 来源: 题型:
【题目】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )
A.56
B.60
C.120
D.140
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)满足:①对于任意实数x,y都有f(x+y)+1=f(x)+f(x)且f()=0;②当x>时,f(x)<0.
(1)求证:f(x)=+f(2x);
(2)用数学归纳法证明:当x∈[,](n∈N*)时, f(x)≤1-.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex-x2+2ax.
(1)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若f(x)在R上单调递增,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
根据已知条件完成下面的2×2列联表,并据此资料,你是否认为“体育迷”与性别有关?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知五面体,其中内接于圆,是圆的直径,四边形为平行四边形,且平面.
(1)证明:平面平面;
(2)若,,且二面角所成角的余弦值为,试求该几何体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的定义域为[﹣1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图所示.
x | ﹣1 | 0 | 4 | 5 |
f(x) | 1 | 2 | 2 | 1 |
下列关于函数f(x)的命题:
①函数y=f(x)是周期函数;
②函数f(x)在[0,2]上是减函数;
③如果当x∈[﹣1,t]时,f(x)的最大值是2,那么t的最大值为5;
④当1<a<2时,函数y=f(x)﹣a有4个零点.
其中所有真命题的序号为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com