精英家教网 > 高中数学 > 题目详情

【题目】如图,已知五面体,其中内接于圆是圆的直径,四边形为平行四边形,且平面

(1)证明:平面平面

(2)若,且二面角所成角的余弦值为,试求该几何体的体积.

【答案】(1)见解析;(2)8

【解析】试题分析:

(1)由圆的性质可得,由线面垂直的性质可得,结合线面垂直的判断定理有平面,故平面平面 .

(2),以所在直线为轴,轴,轴建立空间直角坐标系,结合(1)的结论可得平面的一个法向量是结合方向向量可得平面ABD的一个法向量为,利用空间向量的结论解方程可得则结合体的体积.

试题解析:

(1)是圆的直径,

平面平面,且

平面

平面平面平面 .

(2)设,以所在直线分别为轴,轴,轴,如图所示

由(1)可得,平面

平面的一个法向量是

为平面的一个法向量

由条件得,

不妨令

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)判断fx)的奇偶性,说明理由;

(2)当x>0时,判断fx)的单调性并加以证明;

(3)若f(2t)-mft)>0对于t∈(0,+∞)恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在底面是正方形的四棱锥中, , ,点上,且.

(Ⅰ)求证: 平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为P′( );当P是原点时,定义P的“伴随点“为它自身,平面曲线C上所有点的“伴随点”所构成的曲线C′定义为曲线C的“伴随曲线”.现有下列命题:
①若点A的“伴随点”是点A′,则点A′的“伴随点”是点A;
②单位圆的“伴随曲线”是它自身;
③若曲线C关于x轴对称,则其“伴随曲线”C′关于y轴对称;
④一条直线的“伴随曲线”是一条直线.
其中的真命题是(写出所有真命题的序列).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,倾斜角为α的直线l的参数方程为(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是ρcos2θ-4sin θ=0.

(1)写出直线l的普通方程和曲线C的直角坐标方程;

(2)已知点P(1,0).若点M的极坐标为,直线l经过点M且与曲线C相交于AB两点,设线段AB的中点为Q,求|PQ|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】奇函数fx)在区间(-∞,0)上单调递减,且f(-1)=0,则不等式(x-1)fx-1)<0的解集是(  )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均不为零的数列{an},定义向量 ,n∈N* . 下列命题中真命题是(
A.若?n∈N*总有 成立,则数列{an}是等差数列
B.若?n∈N*总有 成立,则数列{an}是等比数列
C.若?n∈N*总有 成立,则数列{an}是等差数列
D.若?n∈N*总有 成立,则数列{an}是等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取得极值.

求函数的解析式;

若过点可作曲线的三条切线,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数a满足f(log2a)+f)≤2f(1),则a的取值范围是(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案