精英家教网 > 高中数学 > 题目详情

【题目】奇函数fx)在区间(-∞,0)上单调递减,且f(-1)=0,则不等式(x-1)fx-1)<0的解集是(  )

A. B.

C. D.

【答案】A

【解析】

根据题意,分析可得在区间(-∞,-1)上,fx)>0,在(-1,0)上,fx<0,结合函数的奇偶性可得在区间(0,1)上,fx>0,在(1,+∞)上,fx<0,又由x-1)fx-1)<0,可解得的取值范围,即可得出答案.

根据题意,函数fx在(-∞,0)上单调递减,且f(-1)=0,

则在区间(-∞,-1)上,fx)>0,在(-1,0)上,fx)<0,

又由函数fx为奇函数,则在区间(0,1)上,fx)>0,在(1,+∞)上,fx)<0,

所以x-1)fx-1)<0

或者或者

解得:x<0x>2,

x的取值范围为(-∞,0)∪(2,+∞);

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设a>0,b>0,若关于x,y的方程组 无解,则a+b的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的定义域;

(2)当时,判断函数在定义域内的单调性,并用函数单调性定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcos θ=4.

(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|·|OP|=16,求点P的轨迹C2的直角坐标方程;

(2)设点A的极坐标为,点B在曲线C2上,求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知五面体,其中内接于圆是圆的直径,四边形为平行四边形,且平面

(1)证明:平面平面

(2)若,且二面角所成角的余弦值为,试求该几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数a满足f(log2a)+f( a)≤2f(1),则a的取值范围是(
A.
B.[1,2]
C.
D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·湖南)如下图,直三棱柱ABCA1B1C1的底面是边长为2的正三角形,EF分别是BCCC1的中点.

(1)证明:平面AEF⊥平面B1BCC1

(2)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥FAEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:关于x的不等式ax1(a0a≠1)的解集是{x|x0},命题q:函数y=lg(x2xa)的定义域为R,若pq为真,pq为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知离心率为 的椭圆 =1(a>b>0)的一个焦点为F,过F且与x轴垂直的直线与椭圆交于A、B两点,|AB|=
(1)求此椭圆的方程;
(2)已知直线y=kx+2与椭圆交于C、D两点,若以线段CD为直径的圆过点E(﹣1,0),求k的值.

查看答案和解析>>

同步练习册答案