分析 (1)将已知等式两边平方,可求sinθcosθ的值,结合范围θ∈($\frac{π}{2}$,π),可求sinθ-cosθ的值,进而解得sinθ,cosθ的值,利用同角三角函数基本关系式即可得解tanθ的值.
(2)利用诱导公式,同角三角函数基本关系式即可化简得解.
解答 (本题满分为12分,每小题6分)
解:(1)∵sinθ+cosθ=$\frac{1}{5}$,①
∴(sinθ+cosθ)2=$\frac{1}{25}$,
∴1+2sinθcosθ=$\frac{1}{25}$,即sinθcosθ=-$\frac{12}{25}$,
∴(sinθ-cosθ)2=1-2sinθcosθ=$\frac{49}{25}$,
∵θ∈(0,π),且sinθcosθ<0,
∴θ∈($\frac{π}{2}$,π),
∴sinθ>cosθ,
∴sinθ-cosθ=$\frac{7}{5}$,②
∴由①②,解得sinθ=$\frac{4}{5}$,cosθ=-$\frac{3}{5}$,
∴tanθ=-$\frac{4}{3}$.
(2)f(α)=$\frac{sinα•sinα•(-cosα)}{cosα•(-sinα)•tanα}$=cosα.
点评 本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{5π}{24}$ | C. | $\frac{π}{4}$ | D. | $\frac{7π}{24}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -4 | C. | 7 | D. | 11 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com